A Data-Centric Internet of Things Framework Based on Azure Cloud

Internet of Things (IoT) has been found pervasive use cases and become a driving force to constitute a digital society. The ultimate goal of IoT is data and the intelligence generated from data. With the progress in public cloud computing technologies, more and more data can be stored, processed and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.53839-53858
Hauptverfasser: Liu, Yu, Akram Hassan, Kahin, Karlsson, Magnus, Pang, Zhibo, Gong, Shaofang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Internet of Things (IoT) has been found pervasive use cases and become a driving force to constitute a digital society. The ultimate goal of IoT is data and the intelligence generated from data. With the progress in public cloud computing technologies, more and more data can be stored, processed and analyzed in cloud to release the power of IoT. However, due to the heterogeneity of hardware and communication protocols in the IoT world, the interoperability and compatibility among different link layer protocols, sub-systems, and back-end services have become a significant challenge to IoT practices. This challenge cannot be addressed by public cloud suppliers since their efforts are mainly put into software and platform services but can hardly be extended to end devices. In this paper, we propose a data-centric IoT framework that incorporates three promising protocols with fundamental security schemes, i.e., WiFi, Thread, and LoRaWAN, to cater to massive IoT and broadband IoT use cases in local, personal, and wide area networks. By taking advantages of the Azure cloud infrastructure, the framework features a unified device management model and data model to conquer the interoperability challenge. We also provide implementation and a case study to validate the framework for practical applications.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2913224