Circular-Polarized Substrate-Integrated-Waveguide Leaky-Wave Antenna With Wide-Angle and Consistent-Gain Continuous Beam Scanning
Circularly polarized (CP) antennas are in high demand for use in future wireless communications. To advance the development of CP substrate-integrated-waveguide (SIW) leaky-wave antennas (LWAs) with the intent to meet this demand, a novel benzene-ring-shaped slot-loaded LWA with partially reflecting...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on antennas and propagation 2019-07, Vol.67 (7), p.4418-4428 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Circularly polarized (CP) antennas are in high demand for use in future wireless communications. To advance the development of CP substrate-integrated-waveguide (SIW) leaky-wave antennas (LWAs) with the intent to meet this demand, a novel benzene-ring-shaped slot-loaded LWA with partially reflecting wall (PRW) vias is investigated and verified to realize wide-angle continuous beam scanning with consistent gain. The dispersion features of slot-loaded SIW LWAs with PRW vias are theoretically explored using an equivalent circuit model. The CP radiation feature is investigated numerically utilizing the E- and H-field distributions of an initial design and its equivalent magnetic currents. The results of these studies are used to demonstrate that improved CP performance over a wide-angle scan range can be attained with a change from a standard slot shape to a benzene-ring-shaped slot. The resulting benzene-ring-shaped slot-loaded CP SIW LWA was optimized, fabricated, and measured. The measured results verify that a CP beam was continuously scanned through a wide angle from backward to forward directions with a consistent gain. The prototype exhibits a continuous 97.1° CP beam scan with a gain variation between 8 and 11.3 dBic when the source frequency is swept from 9.35 to 11.75 GHz. |
---|---|
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/TAP.2019.2911398 |