A Polarized Random Fourier Feature Kernel Least-Mean-Square Algorithm
This paper presents a polarized random Fourier feature kernel least-mean-square algorithm that aims to overcome the dimension curve of the random Fourier feature kernel least-mean-square (RFFKLMS) algorithm. RFFKLMS is an effective nonlinear adaptive filtering algorithm based on the kernel approxima...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.50833-50838 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a polarized random Fourier feature kernel least-mean-square algorithm that aims to overcome the dimension curve of the random Fourier feature kernel least-mean-square (RFFKLMS) algorithm. RFFKLMS is an effective nonlinear adaptive filtering algorithm based on the kernel approximation technique. However, random samples drawn from the distribution need more dimensions to achieve better-generalized performance because they are independent of the training data. To overcome this weakness, a kernel polarization method is adopted to optimize the random samples. Polarized random Fourier features demonstrate a clear advantage over a method without using the polarization method. The experimental results in the context of Lorenz time series prediction and channel equalization verify the effectiveness of the proposed method. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2909304 |