A Polarized Random Fourier Feature Kernel Least-Mean-Square Algorithm

This paper presents a polarized random Fourier feature kernel least-mean-square algorithm that aims to overcome the dimension curve of the random Fourier feature kernel least-mean-square (RFFKLMS) algorithm. RFFKLMS is an effective nonlinear adaptive filtering algorithm based on the kernel approxima...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.50833-50838
Hauptverfasser: Liu, Yuqi, Xu, Yonghui, Yang, Jingli, Jiang, Shouda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a polarized random Fourier feature kernel least-mean-square algorithm that aims to overcome the dimension curve of the random Fourier feature kernel least-mean-square (RFFKLMS) algorithm. RFFKLMS is an effective nonlinear adaptive filtering algorithm based on the kernel approximation technique. However, random samples drawn from the distribution need more dimensions to achieve better-generalized performance because they are independent of the training data. To overcome this weakness, a kernel polarization method is adopted to optimize the random samples. Polarized random Fourier features demonstrate a clear advantage over a method without using the polarization method. The experimental results in the context of Lorenz time series prediction and channel equalization verify the effectiveness of the proposed method.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2909304