Random Walks for Pansharpening in Complex Tight Framelet Domain
In this paper, a new random walk (RW) pansharpening method on the basis of the complex framelet domain is proposed. In the process of fusion, the hidden Markov tree model is first established based on the statistical properties of complex high-pass framelet coefficients. On this basis, a novel RW fu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2019-07, Vol.57 (7), p.5121-5134 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a new random walk (RW) pansharpening method on the basis of the complex framelet domain is proposed. In the process of fusion, the hidden Markov tree model is first established based on the statistical properties of complex high-pass framelet coefficients. On this basis, a novel RW fusion algorithm is presented. Then, the probabilities of complex framelet coefficients being allotted original images are solved by the linear system of equations. Based on these probabilities, the spatial details of the panchromatic image are selectively injected into the multispectral (MS) image to get a space-enhanced MS image. In the end, the GeoGye-1, WorldView-3, and WorldView-2 remote sensing image data sets are used to evaluate the performance of the presented method quantitatively and qualitatively. The results of the experiment show that our method outperforms some state-of-the-art approaches. It can improve the spatial resolution of the MS image while keeping the spectral information. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2019.2897010 |