Using Floating-Gate Memory to Train Ideal Accuracy Neural Networks
Floating-gate silicon-oxygen-nitrogen-oxygen-silicon (SONOS) transistors can be used to train neural networks to ideal accuracies that match those of floating-point digital weights on the MNIST handwritten digit data set when using multiple devices to represent a weight or within 1% of ideal accurac...
Gespeichert in:
Veröffentlicht in: | IEEE journal on exploratory solid-state computational devices and circuits 2019-06, Vol.5 (1), p.52-57 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Floating-gate silicon-oxygen-nitrogen-oxygen-silicon (SONOS) transistors can be used to train neural networks to ideal accuracies that match those of floating-point digital weights on the MNIST handwritten digit data set when using multiple devices to represent a weight or within 1% of ideal accuracy when using a single device. This is enabled by operating devices in the subthreshold regime, where they exhibit symmetric write nonlinearities. A neural training accelerator core based on SONOS with a single device per weight would increase energy efficiency by 120×, operate 2.1× faster, and require 5× lower area than an optimized SRAM-based ASIC. |
---|---|
ISSN: | 2329-9231 2329-9231 |
DOI: | 10.1109/JXCDC.2019.2902409 |