Bayesian Real-Time QRS Complex Detector for Healthcare System

An efficient algorithm for the heartbeat detection in the Internet of Things (IoT) health-care system remains a challenging issue due to incurred random variations. The QRS complex reflects the electrical activity within the heart during the ventricular contraction. Although recently many QRS comple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2019-06, Vol.6 (3), p.5540-5549
Hauptverfasser: Chin, Wen-Long, Chang, Cheng-Chieh, Tseng, Cheng-Lung, Huang, Ying-Zhe, Jiang, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5549
container_issue 3
container_start_page 5540
container_title IEEE internet of things journal
container_volume 6
creator Chin, Wen-Long
Chang, Cheng-Chieh
Tseng, Cheng-Lung
Huang, Ying-Zhe
Jiang, Tao
description An efficient algorithm for the heartbeat detection in the Internet of Things (IoT) health-care system remains a challenging issue due to incurred random variations. The QRS complex reflects the electrical activity within the heart during the ventricular contraction. Although recently many QRS complex detection methods have been proposed with different features, their real-time implementations in low-cost portable platforms are still problems due to limited hardware resources. As a result, it is difficult to provide the accuracy level required for medical applications. By contrast, this paper focuses on developing a new method based on the Bayesian framework to provide a real-time and accurate QRS complex detector. More specifically, we propose a new algorithm with two stages, i.e., variance-based detection (VBD) and maximum-likelihood estimation (MLE), to detect QRS complexes. Furthermore, simulations with the benchmark MIT-BIH arrhythmia and QT databases verify the advantage of being easily portable to different databases using the proposed approach.
doi_str_mv 10.1109/JIOT.2019.2903530
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8662625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8662625</ieee_id><sourcerecordid>2244345582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a719a31d7188facdd3c46a24a1ce33da950e72a890abcf00071e4bf0f80845da3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKo_QLwseN6az93k4EHrRyuFYlvPYZqd4JZutyZbsP_elBbxMMwcnndmeAi5YXTAGDX37-PpYsApMwNuqFCCnpEeF7zMZVHw83_zJbmOcUUpTTHFTNEjD0-wx1jDJpshrPNF3WD2MZtnw7bZrvEne8YOXdeGzKcaJaT7chAwm-9jh80VufCwjnh96n3y-fqyGI7yyfRtPHyc5I4b0eVQMgOCVSXT2oOrKuFkAVwCcyhEBUZRLDloQ2HpfHqvZCiXnnpNtVQViD65O-7dhvZ7h7Gzq3YXNumk5VxKIZXSPFHsSLnQxhjQ222oGwh7y6g9iLIHUfYgyp5EpcztMVMj4h-vk6uCK_ELUKtimw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244345582</pqid></control><display><type>article</type><title>Bayesian Real-Time QRS Complex Detector for Healthcare System</title><source>IEEE Xplore</source><creator>Chin, Wen-Long ; Chang, Cheng-Chieh ; Tseng, Cheng-Lung ; Huang, Ying-Zhe ; Jiang, Tao</creator><creatorcontrib>Chin, Wen-Long ; Chang, Cheng-Chieh ; Tseng, Cheng-Lung ; Huang, Ying-Zhe ; Jiang, Tao</creatorcontrib><description>An efficient algorithm for the heartbeat detection in the Internet of Things (IoT) health-care system remains a challenging issue due to incurred random variations. The QRS complex reflects the electrical activity within the heart during the ventricular contraction. Although recently many QRS complex detection methods have been proposed with different features, their real-time implementations in low-cost portable platforms are still problems due to limited hardware resources. As a result, it is difficult to provide the accuracy level required for medical applications. By contrast, this paper focuses on developing a new method based on the Bayesian framework to provide a real-time and accurate QRS complex detector. More specifically, we propose a new algorithm with two stages, i.e., variance-based detection (VBD) and maximum-likelihood estimation (MLE), to detect QRS complexes. Furthermore, simulations with the benchmark MIT-BIH arrhythmia and QT databases verify the advantage of being easily portable to different databases using the proposed approach.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2019.2903530</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Arrhythmia ; Band-pass filters ; Bayes methods ; Bayesian analysis ; Bayesian framework ; Computer simulation ; detection ; electrocardiogram (ECG) ; Electrocardiography ; Heart ; Heart beat ; heartbeats ; Internet of Things ; Maximum likelihood estimation ; QRS complex ; Real time ; Real-time systems</subject><ispartof>IEEE internet of things journal, 2019-06, Vol.6 (3), p.5540-5549</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a719a31d7188facdd3c46a24a1ce33da950e72a890abcf00071e4bf0f80845da3</citedby><cites>FETCH-LOGICAL-c293t-a719a31d7188facdd3c46a24a1ce33da950e72a890abcf00071e4bf0f80845da3</cites><orcidid>0000-0002-8482-1046 ; 0000-0002-5914-6253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8662625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8662625$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chin, Wen-Long</creatorcontrib><creatorcontrib>Chang, Cheng-Chieh</creatorcontrib><creatorcontrib>Tseng, Cheng-Lung</creatorcontrib><creatorcontrib>Huang, Ying-Zhe</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><title>Bayesian Real-Time QRS Complex Detector for Healthcare System</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>An efficient algorithm for the heartbeat detection in the Internet of Things (IoT) health-care system remains a challenging issue due to incurred random variations. The QRS complex reflects the electrical activity within the heart during the ventricular contraction. Although recently many QRS complex detection methods have been proposed with different features, their real-time implementations in low-cost portable platforms are still problems due to limited hardware resources. As a result, it is difficult to provide the accuracy level required for medical applications. By contrast, this paper focuses on developing a new method based on the Bayesian framework to provide a real-time and accurate QRS complex detector. More specifically, we propose a new algorithm with two stages, i.e., variance-based detection (VBD) and maximum-likelihood estimation (MLE), to detect QRS complexes. Furthermore, simulations with the benchmark MIT-BIH arrhythmia and QT databases verify the advantage of being easily portable to different databases using the proposed approach.</description><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>Band-pass filters</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian framework</subject><subject>Computer simulation</subject><subject>detection</subject><subject>electrocardiogram (ECG)</subject><subject>Electrocardiography</subject><subject>Heart</subject><subject>Heart beat</subject><subject>heartbeats</subject><subject>Internet of Things</subject><subject>Maximum likelihood estimation</subject><subject>QRS complex</subject><subject>Real time</subject><subject>Real-time systems</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKo_QLwseN6az93k4EHrRyuFYlvPYZqd4JZutyZbsP_elBbxMMwcnndmeAi5YXTAGDX37-PpYsApMwNuqFCCnpEeF7zMZVHw83_zJbmOcUUpTTHFTNEjD0-wx1jDJpshrPNF3WD2MZtnw7bZrvEne8YOXdeGzKcaJaT7chAwm-9jh80VufCwjnh96n3y-fqyGI7yyfRtPHyc5I4b0eVQMgOCVSXT2oOrKuFkAVwCcyhEBUZRLDloQ2HpfHqvZCiXnnpNtVQViD65O-7dhvZ7h7Gzq3YXNumk5VxKIZXSPFHsSLnQxhjQ222oGwh7y6g9iLIHUfYgyp5EpcztMVMj4h-vk6uCK_ELUKtimw</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Chin, Wen-Long</creator><creator>Chang, Cheng-Chieh</creator><creator>Tseng, Cheng-Lung</creator><creator>Huang, Ying-Zhe</creator><creator>Jiang, Tao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8482-1046</orcidid><orcidid>https://orcid.org/0000-0002-5914-6253</orcidid></search><sort><creationdate>20190601</creationdate><title>Bayesian Real-Time QRS Complex Detector for Healthcare System</title><author>Chin, Wen-Long ; Chang, Cheng-Chieh ; Tseng, Cheng-Lung ; Huang, Ying-Zhe ; Jiang, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a719a31d7188facdd3c46a24a1ce33da950e72a890abcf00071e4bf0f80845da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>Band-pass filters</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian framework</topic><topic>Computer simulation</topic><topic>detection</topic><topic>electrocardiogram (ECG)</topic><topic>Electrocardiography</topic><topic>Heart</topic><topic>Heart beat</topic><topic>heartbeats</topic><topic>Internet of Things</topic><topic>Maximum likelihood estimation</topic><topic>QRS complex</topic><topic>Real time</topic><topic>Real-time systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Chin, Wen-Long</creatorcontrib><creatorcontrib>Chang, Cheng-Chieh</creatorcontrib><creatorcontrib>Tseng, Cheng-Lung</creatorcontrib><creatorcontrib>Huang, Ying-Zhe</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chin, Wen-Long</au><au>Chang, Cheng-Chieh</au><au>Tseng, Cheng-Lung</au><au>Huang, Ying-Zhe</au><au>Jiang, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Real-Time QRS Complex Detector for Healthcare System</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>6</volume><issue>3</issue><spage>5540</spage><epage>5549</epage><pages>5540-5549</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>An efficient algorithm for the heartbeat detection in the Internet of Things (IoT) health-care system remains a challenging issue due to incurred random variations. The QRS complex reflects the electrical activity within the heart during the ventricular contraction. Although recently many QRS complex detection methods have been proposed with different features, their real-time implementations in low-cost portable platforms are still problems due to limited hardware resources. As a result, it is difficult to provide the accuracy level required for medical applications. By contrast, this paper focuses on developing a new method based on the Bayesian framework to provide a real-time and accurate QRS complex detector. More specifically, we propose a new algorithm with two stages, i.e., variance-based detection (VBD) and maximum-likelihood estimation (MLE), to detect QRS complexes. Furthermore, simulations with the benchmark MIT-BIH arrhythmia and QT databases verify the advantage of being easily portable to different databases using the proposed approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2019.2903530</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8482-1046</orcidid><orcidid>https://orcid.org/0000-0002-5914-6253</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2019-06, Vol.6 (3), p.5540-5549
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_8662625
source IEEE Xplore
subjects Algorithms
Arrhythmia
Band-pass filters
Bayes methods
Bayesian analysis
Bayesian framework
Computer simulation
detection
electrocardiogram (ECG)
Electrocardiography
Heart
Heart beat
heartbeats
Internet of Things
Maximum likelihood estimation
QRS complex
Real time
Real-time systems
title Bayesian Real-Time QRS Complex Detector for Healthcare System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Real-Time%20QRS%20Complex%20Detector%20for%20Healthcare%20System&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Chin,%20Wen-Long&rft.date=2019-06-01&rft.volume=6&rft.issue=3&rft.spage=5540&rft.epage=5549&rft.pages=5540-5549&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2019.2903530&rft_dat=%3Cproquest_RIE%3E2244345582%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244345582&rft_id=info:pmid/&rft_ieee_id=8662625&rfr_iscdi=true