Bayesian Real-Time QRS Complex Detector for Healthcare System
An efficient algorithm for the heartbeat detection in the Internet of Things (IoT) health-care system remains a challenging issue due to incurred random variations. The QRS complex reflects the electrical activity within the heart during the ventricular contraction. Although recently many QRS comple...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2019-06, Vol.6 (3), p.5540-5549 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5549 |
---|---|
container_issue | 3 |
container_start_page | 5540 |
container_title | IEEE internet of things journal |
container_volume | 6 |
creator | Chin, Wen-Long Chang, Cheng-Chieh Tseng, Cheng-Lung Huang, Ying-Zhe Jiang, Tao |
description | An efficient algorithm for the heartbeat detection in the Internet of Things (IoT) health-care system remains a challenging issue due to incurred random variations. The QRS complex reflects the electrical activity within the heart during the ventricular contraction. Although recently many QRS complex detection methods have been proposed with different features, their real-time implementations in low-cost portable platforms are still problems due to limited hardware resources. As a result, it is difficult to provide the accuracy level required for medical applications. By contrast, this paper focuses on developing a new method based on the Bayesian framework to provide a real-time and accurate QRS complex detector. More specifically, we propose a new algorithm with two stages, i.e., variance-based detection (VBD) and maximum-likelihood estimation (MLE), to detect QRS complexes. Furthermore, simulations with the benchmark MIT-BIH arrhythmia and QT databases verify the advantage of being easily portable to different databases using the proposed approach. |
doi_str_mv | 10.1109/JIOT.2019.2903530 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8662625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8662625</ieee_id><sourcerecordid>2244345582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a719a31d7188facdd3c46a24a1ce33da950e72a890abcf00071e4bf0f80845da3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKo_QLwseN6az93k4EHrRyuFYlvPYZqd4JZutyZbsP_elBbxMMwcnndmeAi5YXTAGDX37-PpYsApMwNuqFCCnpEeF7zMZVHw83_zJbmOcUUpTTHFTNEjD0-wx1jDJpshrPNF3WD2MZtnw7bZrvEne8YOXdeGzKcaJaT7chAwm-9jh80VufCwjnh96n3y-fqyGI7yyfRtPHyc5I4b0eVQMgOCVSXT2oOrKuFkAVwCcyhEBUZRLDloQ2HpfHqvZCiXnnpNtVQViD65O-7dhvZ7h7Gzq3YXNumk5VxKIZXSPFHsSLnQxhjQ222oGwh7y6g9iLIHUfYgyp5EpcztMVMj4h-vk6uCK_ELUKtimw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244345582</pqid></control><display><type>article</type><title>Bayesian Real-Time QRS Complex Detector for Healthcare System</title><source>IEEE Xplore</source><creator>Chin, Wen-Long ; Chang, Cheng-Chieh ; Tseng, Cheng-Lung ; Huang, Ying-Zhe ; Jiang, Tao</creator><creatorcontrib>Chin, Wen-Long ; Chang, Cheng-Chieh ; Tseng, Cheng-Lung ; Huang, Ying-Zhe ; Jiang, Tao</creatorcontrib><description>An efficient algorithm for the heartbeat detection in the Internet of Things (IoT) health-care system remains a challenging issue due to incurred random variations. The QRS complex reflects the electrical activity within the heart during the ventricular contraction. Although recently many QRS complex detection methods have been proposed with different features, their real-time implementations in low-cost portable platforms are still problems due to limited hardware resources. As a result, it is difficult to provide the accuracy level required for medical applications. By contrast, this paper focuses on developing a new method based on the Bayesian framework to provide a real-time and accurate QRS complex detector. More specifically, we propose a new algorithm with two stages, i.e., variance-based detection (VBD) and maximum-likelihood estimation (MLE), to detect QRS complexes. Furthermore, simulations with the benchmark MIT-BIH arrhythmia and QT databases verify the advantage of being easily portable to different databases using the proposed approach.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2019.2903530</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Arrhythmia ; Band-pass filters ; Bayes methods ; Bayesian analysis ; Bayesian framework ; Computer simulation ; detection ; electrocardiogram (ECG) ; Electrocardiography ; Heart ; Heart beat ; heartbeats ; Internet of Things ; Maximum likelihood estimation ; QRS complex ; Real time ; Real-time systems</subject><ispartof>IEEE internet of things journal, 2019-06, Vol.6 (3), p.5540-5549</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a719a31d7188facdd3c46a24a1ce33da950e72a890abcf00071e4bf0f80845da3</citedby><cites>FETCH-LOGICAL-c293t-a719a31d7188facdd3c46a24a1ce33da950e72a890abcf00071e4bf0f80845da3</cites><orcidid>0000-0002-8482-1046 ; 0000-0002-5914-6253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8662625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8662625$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chin, Wen-Long</creatorcontrib><creatorcontrib>Chang, Cheng-Chieh</creatorcontrib><creatorcontrib>Tseng, Cheng-Lung</creatorcontrib><creatorcontrib>Huang, Ying-Zhe</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><title>Bayesian Real-Time QRS Complex Detector for Healthcare System</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>An efficient algorithm for the heartbeat detection in the Internet of Things (IoT) health-care system remains a challenging issue due to incurred random variations. The QRS complex reflects the electrical activity within the heart during the ventricular contraction. Although recently many QRS complex detection methods have been proposed with different features, their real-time implementations in low-cost portable platforms are still problems due to limited hardware resources. As a result, it is difficult to provide the accuracy level required for medical applications. By contrast, this paper focuses on developing a new method based on the Bayesian framework to provide a real-time and accurate QRS complex detector. More specifically, we propose a new algorithm with two stages, i.e., variance-based detection (VBD) and maximum-likelihood estimation (MLE), to detect QRS complexes. Furthermore, simulations with the benchmark MIT-BIH arrhythmia and QT databases verify the advantage of being easily portable to different databases using the proposed approach.</description><subject>Algorithms</subject><subject>Arrhythmia</subject><subject>Band-pass filters</subject><subject>Bayes methods</subject><subject>Bayesian analysis</subject><subject>Bayesian framework</subject><subject>Computer simulation</subject><subject>detection</subject><subject>electrocardiogram (ECG)</subject><subject>Electrocardiography</subject><subject>Heart</subject><subject>Heart beat</subject><subject>heartbeats</subject><subject>Internet of Things</subject><subject>Maximum likelihood estimation</subject><subject>QRS complex</subject><subject>Real time</subject><subject>Real-time systems</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKo_QLwseN6az93k4EHrRyuFYlvPYZqd4JZutyZbsP_elBbxMMwcnndmeAi5YXTAGDX37-PpYsApMwNuqFCCnpEeF7zMZVHw83_zJbmOcUUpTTHFTNEjD0-wx1jDJpshrPNF3WD2MZtnw7bZrvEne8YOXdeGzKcaJaT7chAwm-9jh80VufCwjnh96n3y-fqyGI7yyfRtPHyc5I4b0eVQMgOCVSXT2oOrKuFkAVwCcyhEBUZRLDloQ2HpfHqvZCiXnnpNtVQViD65O-7dhvZ7h7Gzq3YXNumk5VxKIZXSPFHsSLnQxhjQ222oGwh7y6g9iLIHUfYgyp5EpcztMVMj4h-vk6uCK_ELUKtimw</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Chin, Wen-Long</creator><creator>Chang, Cheng-Chieh</creator><creator>Tseng, Cheng-Lung</creator><creator>Huang, Ying-Zhe</creator><creator>Jiang, Tao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8482-1046</orcidid><orcidid>https://orcid.org/0000-0002-5914-6253</orcidid></search><sort><creationdate>20190601</creationdate><title>Bayesian Real-Time QRS Complex Detector for Healthcare System</title><author>Chin, Wen-Long ; Chang, Cheng-Chieh ; Tseng, Cheng-Lung ; Huang, Ying-Zhe ; Jiang, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a719a31d7188facdd3c46a24a1ce33da950e72a890abcf00071e4bf0f80845da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Arrhythmia</topic><topic>Band-pass filters</topic><topic>Bayes methods</topic><topic>Bayesian analysis</topic><topic>Bayesian framework</topic><topic>Computer simulation</topic><topic>detection</topic><topic>electrocardiogram (ECG)</topic><topic>Electrocardiography</topic><topic>Heart</topic><topic>Heart beat</topic><topic>heartbeats</topic><topic>Internet of Things</topic><topic>Maximum likelihood estimation</topic><topic>QRS complex</topic><topic>Real time</topic><topic>Real-time systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Chin, Wen-Long</creatorcontrib><creatorcontrib>Chang, Cheng-Chieh</creatorcontrib><creatorcontrib>Tseng, Cheng-Lung</creatorcontrib><creatorcontrib>Huang, Ying-Zhe</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chin, Wen-Long</au><au>Chang, Cheng-Chieh</au><au>Tseng, Cheng-Lung</au><au>Huang, Ying-Zhe</au><au>Jiang, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Real-Time QRS Complex Detector for Healthcare System</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>6</volume><issue>3</issue><spage>5540</spage><epage>5549</epage><pages>5540-5549</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>An efficient algorithm for the heartbeat detection in the Internet of Things (IoT) health-care system remains a challenging issue due to incurred random variations. The QRS complex reflects the electrical activity within the heart during the ventricular contraction. Although recently many QRS complex detection methods have been proposed with different features, their real-time implementations in low-cost portable platforms are still problems due to limited hardware resources. As a result, it is difficult to provide the accuracy level required for medical applications. By contrast, this paper focuses on developing a new method based on the Bayesian framework to provide a real-time and accurate QRS complex detector. More specifically, we propose a new algorithm with two stages, i.e., variance-based detection (VBD) and maximum-likelihood estimation (MLE), to detect QRS complexes. Furthermore, simulations with the benchmark MIT-BIH arrhythmia and QT databases verify the advantage of being easily portable to different databases using the proposed approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2019.2903530</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8482-1046</orcidid><orcidid>https://orcid.org/0000-0002-5914-6253</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2019-06, Vol.6 (3), p.5540-5549 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_8662625 |
source | IEEE Xplore |
subjects | Algorithms Arrhythmia Band-pass filters Bayes methods Bayesian analysis Bayesian framework Computer simulation detection electrocardiogram (ECG) Electrocardiography Heart Heart beat heartbeats Internet of Things Maximum likelihood estimation QRS complex Real time Real-time systems |
title | Bayesian Real-Time QRS Complex Detector for Healthcare System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A19%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Real-Time%20QRS%20Complex%20Detector%20for%20Healthcare%20System&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Chin,%20Wen-Long&rft.date=2019-06-01&rft.volume=6&rft.issue=3&rft.spage=5540&rft.epage=5549&rft.pages=5540-5549&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2019.2903530&rft_dat=%3Cproquest_RIE%3E2244345582%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244345582&rft_id=info:pmid/&rft_ieee_id=8662625&rfr_iscdi=true |