Bayesian Real-Time QRS Complex Detector for Healthcare System
An efficient algorithm for the heartbeat detection in the Internet of Things (IoT) health-care system remains a challenging issue due to incurred random variations. The QRS complex reflects the electrical activity within the heart during the ventricular contraction. Although recently many QRS comple...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2019-06, Vol.6 (3), p.5540-5549 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An efficient algorithm for the heartbeat detection in the Internet of Things (IoT) health-care system remains a challenging issue due to incurred random variations. The QRS complex reflects the electrical activity within the heart during the ventricular contraction. Although recently many QRS complex detection methods have been proposed with different features, their real-time implementations in low-cost portable platforms are still problems due to limited hardware resources. As a result, it is difficult to provide the accuracy level required for medical applications. By contrast, this paper focuses on developing a new method based on the Bayesian framework to provide a real-time and accurate QRS complex detector. More specifically, we propose a new algorithm with two stages, i.e., variance-based detection (VBD) and maximum-likelihood estimation (MLE), to detect QRS complexes. Furthermore, simulations with the benchmark MIT-BIH arrhythmia and QT databases verify the advantage of being easily portable to different databases using the proposed approach. |
---|---|
ISSN: | 2327-4662 2327-4662 |
DOI: | 10.1109/JIOT.2019.2903530 |