Fast 3D-HEVC Depth Map Encoding Using Machine Learning

This paper presents a fast depth map encoding for 3D-High Efficiency Video Coding (3D-HEVC) based on static decision trees. We used data mining and machine learning to correlate the encoder context attributes, building the static decision trees. Each decision tree defines that a depth map Coding Uni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2020-03, Vol.30 (3), p.850-861
Hauptverfasser: Saldanha, Mario, Sanchez, Gustavo, Marcon, Cesar, Agostini, Luciano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 861
container_issue 3
container_start_page 850
container_title IEEE transactions on circuits and systems for video technology
container_volume 30
creator Saldanha, Mario
Sanchez, Gustavo
Marcon, Cesar
Agostini, Luciano
description This paper presents a fast depth map encoding for 3D-High Efficiency Video Coding (3D-HEVC) based on static decision trees. We used data mining and machine learning to correlate the encoder context attributes, building the static decision trees. Each decision tree defines that a depth map Coding Unit (CU) must be or not be split into smaller blocks, considering the encoding context through the evaluation of the encoder attributes. Specialized decision trees for I-frames, P-frames and B-frames define the partitioning of 64 × 64, 32 × 32, and 16 × 16 CUs. We trained the decision trees using data extracted from the 3D-HEVC Test Model considering all-intra and random-access configurations, and we evaluated the proposed approach considering the common test conditions. The experimental results demonstrated that this approach can halve the 3D-HEVC encoder computational effort with less than 0.24% of BD-rate increase on the average for all-intra configuration. When running on random-access configuration, our solution is able to reduce up to 58% the complete 3D-HEVC encoder computational effort with a BD-rate drop of only 0.13%. These results surpass all related works regarding computational effort reduction and BD-rate.
doi_str_mv 10.1109/TCSVT.2019.2898122
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8636965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8636965</ieee_id><sourcerecordid>2374673376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-f6f8a9df02374ec78fac165449df42a89b3b36ff5f1baf3b1faaa6e22cf5b1483</originalsourceid><addsrcrecordid>eNo9kDFPwzAQhS0EEqXwB2CJxJzis2PHHlHaUqRWDKRdLce1aSpIgp0O_HscUrHcnZ7euzt9CN0DngFg-VQW77tyRjDIGRFSACEXaAKMiZQQzC7jjBmkggC7RjchHDGGTGT5BPGlDn1C5-lqsSuSue36Q7LRXbJoTLuvm49kG4a60eZQNzZZW-2bKNyiK6c_g7079ynaLhdlsUrXby-vxfM6NZTKPnXcCS33DhOaZ9bkwmkDnGVZ1DKihaxoRblzzEGlHa3Aaa25JcQ4VsUP6RQ9jns7336fbOjVsT35Jp5Uw0qeU5rz6CKjy_g2BG-d6nz9pf2PAqwGPuqPjxr4qDOfGHoYQ7W19j8gOOWSM_oLeDVf1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374673376</pqid></control><display><type>article</type><title>Fast 3D-HEVC Depth Map Encoding Using Machine Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Saldanha, Mario ; Sanchez, Gustavo ; Marcon, Cesar ; Agostini, Luciano</creator><creatorcontrib>Saldanha, Mario ; Sanchez, Gustavo ; Marcon, Cesar ; Agostini, Luciano</creatorcontrib><description>This paper presents a fast depth map encoding for 3D-High Efficiency Video Coding (3D-HEVC) based on static decision trees. We used data mining and machine learning to correlate the encoder context attributes, building the static decision trees. Each decision tree defines that a depth map Coding Unit (CU) must be or not be split into smaller blocks, considering the encoding context through the evaluation of the encoder attributes. Specialized decision trees for I-frames, P-frames and B-frames define the partitioning of 64 × 64, 32 × 32, and 16 × 16 CUs. We trained the decision trees using data extracted from the 3D-HEVC Test Model considering all-intra and random-access configurations, and we evaluated the proposed approach considering the common test conditions. The experimental results demonstrated that this approach can halve the 3D-HEVC encoder computational effort with less than 0.24% of BD-rate increase on the average for all-intra configuration. When running on random-access configuration, our solution is able to reduce up to 58% the complete 3D-HEVC encoder computational effort with a BD-rate drop of only 0.13%. These results surpass all related works regarding computational effort reduction and BD-rate.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2019.2898122</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3D-HEVC ; Coders ; Coding ; Configurations ; Copper ; Data mining ; Decision trees ; depth maps ; Encoding ; Frames ; Machine learning ; Model testing ; Three dimensional models ; Three-dimensional displays ; time saving ; Video coding ; Video compression</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2020-03, Vol.30 (3), p.850-861</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-f6f8a9df02374ec78fac165449df42a89b3b36ff5f1baf3b1faaa6e22cf5b1483</citedby><cites>FETCH-LOGICAL-c339t-f6f8a9df02374ec78fac165449df42a89b3b36ff5f1baf3b1faaa6e22cf5b1483</cites><orcidid>0000-0002-3421-5830 ; 0000-0002-6771-6359 ; 0000-0002-8399-3014 ; 0000-0002-7811-7896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8636965$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8636965$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Saldanha, Mario</creatorcontrib><creatorcontrib>Sanchez, Gustavo</creatorcontrib><creatorcontrib>Marcon, Cesar</creatorcontrib><creatorcontrib>Agostini, Luciano</creatorcontrib><title>Fast 3D-HEVC Depth Map Encoding Using Machine Learning</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>This paper presents a fast depth map encoding for 3D-High Efficiency Video Coding (3D-HEVC) based on static decision trees. We used data mining and machine learning to correlate the encoder context attributes, building the static decision trees. Each decision tree defines that a depth map Coding Unit (CU) must be or not be split into smaller blocks, considering the encoding context through the evaluation of the encoder attributes. Specialized decision trees for I-frames, P-frames and B-frames define the partitioning of 64 × 64, 32 × 32, and 16 × 16 CUs. We trained the decision trees using data extracted from the 3D-HEVC Test Model considering all-intra and random-access configurations, and we evaluated the proposed approach considering the common test conditions. The experimental results demonstrated that this approach can halve the 3D-HEVC encoder computational effort with less than 0.24% of BD-rate increase on the average for all-intra configuration. When running on random-access configuration, our solution is able to reduce up to 58% the complete 3D-HEVC encoder computational effort with a BD-rate drop of only 0.13%. These results surpass all related works regarding computational effort reduction and BD-rate.</description><subject>3D-HEVC</subject><subject>Coders</subject><subject>Coding</subject><subject>Configurations</subject><subject>Copper</subject><subject>Data mining</subject><subject>Decision trees</subject><subject>depth maps</subject><subject>Encoding</subject><subject>Frames</subject><subject>Machine learning</subject><subject>Model testing</subject><subject>Three dimensional models</subject><subject>Three-dimensional displays</subject><subject>time saving</subject><subject>Video coding</subject><subject>Video compression</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kDFPwzAQhS0EEqXwB2CJxJzis2PHHlHaUqRWDKRdLce1aSpIgp0O_HscUrHcnZ7euzt9CN0DngFg-VQW77tyRjDIGRFSACEXaAKMiZQQzC7jjBmkggC7RjchHDGGTGT5BPGlDn1C5-lqsSuSue36Q7LRXbJoTLuvm49kG4a60eZQNzZZW-2bKNyiK6c_g7079ynaLhdlsUrXby-vxfM6NZTKPnXcCS33DhOaZ9bkwmkDnGVZ1DKihaxoRblzzEGlHa3Aaa25JcQ4VsUP6RQ9jns7336fbOjVsT35Jp5Uw0qeU5rz6CKjy_g2BG-d6nz9pf2PAqwGPuqPjxr4qDOfGHoYQ7W19j8gOOWSM_oLeDVf1w</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Saldanha, Mario</creator><creator>Sanchez, Gustavo</creator><creator>Marcon, Cesar</creator><creator>Agostini, Luciano</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3421-5830</orcidid><orcidid>https://orcid.org/0000-0002-6771-6359</orcidid><orcidid>https://orcid.org/0000-0002-8399-3014</orcidid><orcidid>https://orcid.org/0000-0002-7811-7896</orcidid></search><sort><creationdate>20200301</creationdate><title>Fast 3D-HEVC Depth Map Encoding Using Machine Learning</title><author>Saldanha, Mario ; Sanchez, Gustavo ; Marcon, Cesar ; Agostini, Luciano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-f6f8a9df02374ec78fac165449df42a89b3b36ff5f1baf3b1faaa6e22cf5b1483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3D-HEVC</topic><topic>Coders</topic><topic>Coding</topic><topic>Configurations</topic><topic>Copper</topic><topic>Data mining</topic><topic>Decision trees</topic><topic>depth maps</topic><topic>Encoding</topic><topic>Frames</topic><topic>Machine learning</topic><topic>Model testing</topic><topic>Three dimensional models</topic><topic>Three-dimensional displays</topic><topic>time saving</topic><topic>Video coding</topic><topic>Video compression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saldanha, Mario</creatorcontrib><creatorcontrib>Sanchez, Gustavo</creatorcontrib><creatorcontrib>Marcon, Cesar</creatorcontrib><creatorcontrib>Agostini, Luciano</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saldanha, Mario</au><au>Sanchez, Gustavo</au><au>Marcon, Cesar</au><au>Agostini, Luciano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast 3D-HEVC Depth Map Encoding Using Machine Learning</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>30</volume><issue>3</issue><spage>850</spage><epage>861</epage><pages>850-861</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>This paper presents a fast depth map encoding for 3D-High Efficiency Video Coding (3D-HEVC) based on static decision trees. We used data mining and machine learning to correlate the encoder context attributes, building the static decision trees. Each decision tree defines that a depth map Coding Unit (CU) must be or not be split into smaller blocks, considering the encoding context through the evaluation of the encoder attributes. Specialized decision trees for I-frames, P-frames and B-frames define the partitioning of 64 × 64, 32 × 32, and 16 × 16 CUs. We trained the decision trees using data extracted from the 3D-HEVC Test Model considering all-intra and random-access configurations, and we evaluated the proposed approach considering the common test conditions. The experimental results demonstrated that this approach can halve the 3D-HEVC encoder computational effort with less than 0.24% of BD-rate increase on the average for all-intra configuration. When running on random-access configuration, our solution is able to reduce up to 58% the complete 3D-HEVC encoder computational effort with a BD-rate drop of only 0.13%. These results surpass all related works regarding computational effort reduction and BD-rate.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2019.2898122</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3421-5830</orcidid><orcidid>https://orcid.org/0000-0002-6771-6359</orcidid><orcidid>https://orcid.org/0000-0002-8399-3014</orcidid><orcidid>https://orcid.org/0000-0002-7811-7896</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8215
ispartof IEEE transactions on circuits and systems for video technology, 2020-03, Vol.30 (3), p.850-861
issn 1051-8215
1558-2205
language eng
recordid cdi_ieee_primary_8636965
source IEEE Electronic Library (IEL)
subjects 3D-HEVC
Coders
Coding
Configurations
Copper
Data mining
Decision trees
depth maps
Encoding
Frames
Machine learning
Model testing
Three dimensional models
Three-dimensional displays
time saving
Video coding
Video compression
title Fast 3D-HEVC Depth Map Encoding Using Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%203D-HEVC%20Depth%20Map%20Encoding%20Using%20Machine%20Learning&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Saldanha,%20Mario&rft.date=2020-03-01&rft.volume=30&rft.issue=3&rft.spage=850&rft.epage=861&rft.pages=850-861&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2019.2898122&rft_dat=%3Cproquest_RIE%3E2374673376%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374673376&rft_id=info:pmid/&rft_ieee_id=8636965&rfr_iscdi=true