Fast 3D-HEVC Depth Map Encoding Using Machine Learning
This paper presents a fast depth map encoding for 3D-High Efficiency Video Coding (3D-HEVC) based on static decision trees. We used data mining and machine learning to correlate the encoder context attributes, building the static decision trees. Each decision tree defines that a depth map Coding Uni...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2020-03, Vol.30 (3), p.850-861 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a fast depth map encoding for 3D-High Efficiency Video Coding (3D-HEVC) based on static decision trees. We used data mining and machine learning to correlate the encoder context attributes, building the static decision trees. Each decision tree defines that a depth map Coding Unit (CU) must be or not be split into smaller blocks, considering the encoding context through the evaluation of the encoder attributes. Specialized decision trees for I-frames, P-frames and B-frames define the partitioning of 64 × 64, 32 × 32, and 16 × 16 CUs. We trained the decision trees using data extracted from the 3D-HEVC Test Model considering all-intra and random-access configurations, and we evaluated the proposed approach considering the common test conditions. The experimental results demonstrated that this approach can halve the 3D-HEVC encoder computational effort with less than 0.24% of BD-rate increase on the average for all-intra configuration. When running on random-access configuration, our solution is able to reduce up to 58% the complete 3D-HEVC encoder computational effort with a BD-rate drop of only 0.13%. These results surpass all related works regarding computational effort reduction and BD-rate. |
---|---|
ISSN: | 1051-8215 1558-2205 |
DOI: | 10.1109/TCSVT.2019.2898122 |