Hot Topic Detection Based on a Refined TF-IDF Algorithm
In this paper, we propose a refined term frequency inversed document frequency (TF-IDF) algorithm called TA TF-IDF to find hot terms, based on time distribution information and user attention. We also put forward a method to generate new terms and combined terms, which are split by the Chinese word...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.26996-27007 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a refined term frequency inversed document frequency (TF-IDF) algorithm called TA TF-IDF to find hot terms, based on time distribution information and user attention. We also put forward a method to generate new terms and combined terms, which are split by the Chinese word segmentation algorithm. Then, we extract hot news according to the hot terms, grouping them into K-means clusters so as to realize the detection of hot topics in news. The experimental results indicated that our method based on the refined TF-IDF algorithm can find hot topics effectively. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2893980 |