Textural Noise Correction for Sentinel-1 TOPSAR Cross-Polarization Channel Images

The thermal noise-induced distortions in a Sentinel-1 terrain observation with progressive scans synthetic aperture radar image cannot be corrected by the noise equivalent sigma nought (NESZ) subtraction only. Since the thermal noise is scaled during synthetic aperture radar processing, it resides n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2019-06, Vol.57 (6), p.4040-4049
Hauptverfasser: Park, Jeong-Won, Won, Joong-Sun, Korosov, Anton A., Babiker, Mohamed, Miranda, Nuno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The thermal noise-induced distortions in a Sentinel-1 terrain observation with progressive scans synthetic aperture radar image cannot be corrected by the noise equivalent sigma nought (NESZ) subtraction only. Since the thermal noise is scaled during synthetic aperture radar processing, it resides not only as an additive noise in each pixel but also as a multiplicative noise in the interpixel contrast. In this paper, we investigate the noise characteristics and propose an efficient method for the multiplicative textural noise correction. The core ideas are to find the optimal coefficient of the noise-induced standard deviation (SD) and model the noise contribution to the local SD as a function of the NESZ and the signal-to-noise ratio. Denoising is accomplished by a subwindow-wise adaptive rescaling of the pixel values. The improvements in the first- and second-order statistical textural features demonstrate the effectiveness of the proposed method.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2018.2889381