A DC Voltage Swell Compensator Based on SMES Emulator and Lead-Acid Battery
The fast-response feature from a superconducting magnetic energy storage (SMES) device is favored for suppressing instantaneous voltage and power fluctuations, while the low-cost feature from a conventional battery energy storage (BES) device suits to achieve long-time voltage and power compensation...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2019-03, Vol.29 (2), p.1-4 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The fast-response feature from a superconducting magnetic energy storage (SMES) device is favored for suppressing instantaneous voltage and power fluctuations, while the low-cost feature from a conventional battery energy storage (BES) device suits to achieve long-time voltage and power compensations in the power distribution and utilization systems. This paper investigates a new dc voltage swell compensating scheme by using an SMES-BES-based hybrid energy storage technology. In the preliminary tests, an iron-core copper coil is used to imitate high-temperature superconducting inductor, and this SMES emulator is, then, combined with a lead-acid battery to form a dc voltage swell compensator device. The experimental results demonstrate the feasibility of this SMES-BES-based dc voltage swell compensator to avoid the initial impulse charging current for the lead-acid battery and to extend the steady compensating time duration for the SMES simultaneously. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/TASC.2019.2894017 |