Blocked Maximum Correntropy Criterion Algorithm for Cluster-Sparse System Identifications
A blocked proportionate normalized maximum correntropy criterion (PNMCC) is presented to improve the estimation behavior of the traditional maximum correntropy criterion (MCC) algorithm for identifying the blocked sparse systems. The proposed blocked MCC is implemented by constructing a new cost fun...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2019-11, Vol.66 (11), p.1915-1919 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1919 |
---|---|
container_issue | 11 |
container_start_page | 1915 |
container_title | IEEE transactions on circuits and systems. II, Express briefs |
container_volume | 66 |
creator | Li, Yingsong Jiang, Zhengxiong Shi, Wanlu Han, Xiao Chen, Badong |
description | A blocked proportionate normalized maximum correntropy criterion (PNMCC) is presented to improve the estimation behavior of the traditional maximum correntropy criterion (MCC) algorithm for identifying the blocked sparse systems. The proposed blocked MCC is implemented by constructing a new cost function based on a hybrid-norm constraint (HNC) of the filter coefficient vector to adaptively utilize the cluster-sparse characteristic of unknown systems, denoting as hybrid-norm constrained PNMCC (HNC-PNMCC). The proposed HNC-PNMCC algorithm is achieved by using the basis pursuit. Various simulations are brought out to confirm the validity of the HNC-PNMCC. Simulation results indicate that the HNC-PNMCC is better than the PNMCC, MCC, and sparse MCC with respect to the estimation performance for the cluster-sparse system identification under the impulsive noises. |
doi_str_mv | 10.1109/TCSII.2019.2891654 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8606189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8606189</ieee_id><sourcerecordid>2311118444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-3d464f795ef077e6742b8acc422a53da28952a292e404a30ca599f1114a7151e3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAnCxxDnF6584PpaIQqQiDi0HTpZJHEhJ6mAnEn17XFpx2h3tfLvaQegayAyAqLt1viqKGSWgZjRTkAp-giYgRJYwqeB033OVSMnlOboIYUMIVYTRCXq7b135ZSv8bH6abuxw7ry328G7fodz3wzWN26L5-2Hi-Kzw7XzOG_HEAfJqjc-WLzaRdXhoopcUzelGSISLtFZbdpgr451il4XD-v8KVm-PBb5fJmUVIkhYRVPeS2VsDWR0qaS0_fMlCWn1AhWmfiOoIYqajnhhpHSCKVqAOBGggDLpuj2sLf37nu0YdAbN_ptPKkpiz7IOOfRRQ-u0rsQvK1175vO-J0GovcR6r8I9T5CfYwwQjcHqLHW_gNZSlLIFPsF8yFtfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311118444</pqid></control><display><type>article</type><title>Blocked Maximum Correntropy Criterion Algorithm for Cluster-Sparse System Identifications</title><source>IEEE</source><creator>Li, Yingsong ; Jiang, Zhengxiong ; Shi, Wanlu ; Han, Xiao ; Chen, Badong</creator><creatorcontrib>Li, Yingsong ; Jiang, Zhengxiong ; Shi, Wanlu ; Han, Xiao ; Chen, Badong</creatorcontrib><description>A blocked proportionate normalized maximum correntropy criterion (PNMCC) is presented to improve the estimation behavior of the traditional maximum correntropy criterion (MCC) algorithm for identifying the blocked sparse systems. The proposed blocked MCC is implemented by constructing a new cost function based on a hybrid-norm constraint (HNC) of the filter coefficient vector to adaptively utilize the cluster-sparse characteristic of unknown systems, denoting as hybrid-norm constrained PNMCC (HNC-PNMCC). The proposed HNC-PNMCC algorithm is achieved by using the basis pursuit. Various simulations are brought out to confirm the validity of the HNC-PNMCC. Simulation results indicate that the HNC-PNMCC is better than the PNMCC, MCC, and sparse MCC with respect to the estimation performance for the cluster-sparse system identification under the impulsive noises.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2019.2891654</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l ; Algorithms ; Circuits and systems ; cluster-sparse system ; Clustering algorithms ; Clusters ; Computer simulation ; Constraints ; Convergence ; Cost function ; Criteria ; Dispersion ; Estimation ; Hybrid systems ; impulsive noise environments ; Indexes ; Kernel ; Maximum correntropy criterion ; norm ; PNMCC algorithm ; System identification</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2019-11, Vol.66 (11), p.1915-1919</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-3d464f795ef077e6742b8acc422a53da28952a292e404a30ca599f1114a7151e3</citedby><cites>FETCH-LOGICAL-c295t-3d464f795ef077e6742b8acc422a53da28952a292e404a30ca599f1114a7151e3</cites><orcidid>0000-0003-3915-8043 ; 0000-0003-1710-3818 ; 0000-0003-3457-2077 ; 0000-0002-2450-6028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8606189$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8606189$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Yingsong</creatorcontrib><creatorcontrib>Jiang, Zhengxiong</creatorcontrib><creatorcontrib>Shi, Wanlu</creatorcontrib><creatorcontrib>Han, Xiao</creatorcontrib><creatorcontrib>Chen, Badong</creatorcontrib><title>Blocked Maximum Correntropy Criterion Algorithm for Cluster-Sparse System Identifications</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>A blocked proportionate normalized maximum correntropy criterion (PNMCC) is presented to improve the estimation behavior of the traditional maximum correntropy criterion (MCC) algorithm for identifying the blocked sparse systems. The proposed blocked MCC is implemented by constructing a new cost function based on a hybrid-norm constraint (HNC) of the filter coefficient vector to adaptively utilize the cluster-sparse characteristic of unknown systems, denoting as hybrid-norm constrained PNMCC (HNC-PNMCC). The proposed HNC-PNMCC algorithm is achieved by using the basis pursuit. Various simulations are brought out to confirm the validity of the HNC-PNMCC. Simulation results indicate that the HNC-PNMCC is better than the PNMCC, MCC, and sparse MCC with respect to the estimation performance for the cluster-sparse system identification under the impulsive noises.</description><subject><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l</subject><subject>Algorithms</subject><subject>Circuits and systems</subject><subject>cluster-sparse system</subject><subject>Clustering algorithms</subject><subject>Clusters</subject><subject>Computer simulation</subject><subject>Constraints</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Criteria</subject><subject>Dispersion</subject><subject>Estimation</subject><subject>Hybrid systems</subject><subject>impulsive noise environments</subject><subject>Indexes</subject><subject>Kernel</subject><subject>Maximum correntropy criterion</subject><subject>norm</subject><subject>PNMCC algorithm</subject><subject>System identification</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqXwAnCxxDnF6584PpaIQqQiDi0HTpZJHEhJ6mAnEn17XFpx2h3tfLvaQegayAyAqLt1viqKGSWgZjRTkAp-giYgRJYwqeB033OVSMnlOboIYUMIVYTRCXq7b135ZSv8bH6abuxw7ry328G7fodz3wzWN26L5-2Hi-Kzw7XzOG_HEAfJqjc-WLzaRdXhoopcUzelGSISLtFZbdpgr451il4XD-v8KVm-PBb5fJmUVIkhYRVPeS2VsDWR0qaS0_fMlCWn1AhWmfiOoIYqajnhhpHSCKVqAOBGggDLpuj2sLf37nu0YdAbN_ptPKkpiz7IOOfRRQ-u0rsQvK1175vO-J0GovcR6r8I9T5CfYwwQjcHqLHW_gNZSlLIFPsF8yFtfA</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Li, Yingsong</creator><creator>Jiang, Zhengxiong</creator><creator>Shi, Wanlu</creator><creator>Han, Xiao</creator><creator>Chen, Badong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3915-8043</orcidid><orcidid>https://orcid.org/0000-0003-1710-3818</orcidid><orcidid>https://orcid.org/0000-0003-3457-2077</orcidid><orcidid>https://orcid.org/0000-0002-2450-6028</orcidid></search><sort><creationdate>20191101</creationdate><title>Blocked Maximum Correntropy Criterion Algorithm for Cluster-Sparse System Identifications</title><author>Li, Yingsong ; Jiang, Zhengxiong ; Shi, Wanlu ; Han, Xiao ; Chen, Badong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-3d464f795ef077e6742b8acc422a53da28952a292e404a30ca599f1114a7151e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic><italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l</topic><topic>Algorithms</topic><topic>Circuits and systems</topic><topic>cluster-sparse system</topic><topic>Clustering algorithms</topic><topic>Clusters</topic><topic>Computer simulation</topic><topic>Constraints</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Criteria</topic><topic>Dispersion</topic><topic>Estimation</topic><topic>Hybrid systems</topic><topic>impulsive noise environments</topic><topic>Indexes</topic><topic>Kernel</topic><topic>Maximum correntropy criterion</topic><topic>norm</topic><topic>PNMCC algorithm</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yingsong</creatorcontrib><creatorcontrib>Jiang, Zhengxiong</creatorcontrib><creatorcontrib>Shi, Wanlu</creatorcontrib><creatorcontrib>Han, Xiao</creatorcontrib><creatorcontrib>Chen, Badong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yingsong</au><au>Jiang, Zhengxiong</au><au>Shi, Wanlu</au><au>Han, Xiao</au><au>Chen, Badong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blocked Maximum Correntropy Criterion Algorithm for Cluster-Sparse System Identifications</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>66</volume><issue>11</issue><spage>1915</spage><epage>1919</epage><pages>1915-1919</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>A blocked proportionate normalized maximum correntropy criterion (PNMCC) is presented to improve the estimation behavior of the traditional maximum correntropy criterion (MCC) algorithm for identifying the blocked sparse systems. The proposed blocked MCC is implemented by constructing a new cost function based on a hybrid-norm constraint (HNC) of the filter coefficient vector to adaptively utilize the cluster-sparse characteristic of unknown systems, denoting as hybrid-norm constrained PNMCC (HNC-PNMCC). The proposed HNC-PNMCC algorithm is achieved by using the basis pursuit. Various simulations are brought out to confirm the validity of the HNC-PNMCC. Simulation results indicate that the HNC-PNMCC is better than the PNMCC, MCC, and sparse MCC with respect to the estimation performance for the cluster-sparse system identification under the impulsive noises.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2019.2891654</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3915-8043</orcidid><orcidid>https://orcid.org/0000-0003-1710-3818</orcidid><orcidid>https://orcid.org/0000-0003-3457-2077</orcidid><orcidid>https://orcid.org/0000-0002-2450-6028</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1549-7747 |
ispartof | IEEE transactions on circuits and systems. II, Express briefs, 2019-11, Vol.66 (11), p.1915-1919 |
issn | 1549-7747 1558-3791 |
language | eng |
recordid | cdi_ieee_primary_8606189 |
source | IEEE |
subjects | <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l Algorithms Circuits and systems cluster-sparse system Clustering algorithms Clusters Computer simulation Constraints Convergence Cost function Criteria Dispersion Estimation Hybrid systems impulsive noise environments Indexes Kernel Maximum correntropy criterion norm PNMCC algorithm System identification |
title | Blocked Maximum Correntropy Criterion Algorithm for Cluster-Sparse System Identifications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A13%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blocked%20Maximum%20Correntropy%20Criterion%20Algorithm%20for%20Cluster-Sparse%20System%20Identifications&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Li,%20Yingsong&rft.date=2019-11-01&rft.volume=66&rft.issue=11&rft.spage=1915&rft.epage=1919&rft.pages=1915-1919&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2019.2891654&rft_dat=%3Cproquest_RIE%3E2311118444%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311118444&rft_id=info:pmid/&rft_ieee_id=8606189&rfr_iscdi=true |