Blocked Maximum Correntropy Criterion Algorithm for Cluster-Sparse System Identifications

A blocked proportionate normalized maximum correntropy criterion (PNMCC) is presented to improve the estimation behavior of the traditional maximum correntropy criterion (MCC) algorithm for identifying the blocked sparse systems. The proposed blocked MCC is implemented by constructing a new cost fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2019-11, Vol.66 (11), p.1915-1919
Hauptverfasser: Li, Yingsong, Jiang, Zhengxiong, Shi, Wanlu, Han, Xiao, Chen, Badong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1919
container_issue 11
container_start_page 1915
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 66
creator Li, Yingsong
Jiang, Zhengxiong
Shi, Wanlu
Han, Xiao
Chen, Badong
description A blocked proportionate normalized maximum correntropy criterion (PNMCC) is presented to improve the estimation behavior of the traditional maximum correntropy criterion (MCC) algorithm for identifying the blocked sparse systems. The proposed blocked MCC is implemented by constructing a new cost function based on a hybrid-norm constraint (HNC) of the filter coefficient vector to adaptively utilize the cluster-sparse characteristic of unknown systems, denoting as hybrid-norm constrained PNMCC (HNC-PNMCC). The proposed HNC-PNMCC algorithm is achieved by using the basis pursuit. Various simulations are brought out to confirm the validity of the HNC-PNMCC. Simulation results indicate that the HNC-PNMCC is better than the PNMCC, MCC, and sparse MCC with respect to the estimation performance for the cluster-sparse system identification under the impulsive noises.
doi_str_mv 10.1109/TCSII.2019.2891654
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8606189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8606189</ieee_id><sourcerecordid>2311118444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-3d464f795ef077e6742b8acc422a53da28952a292e404a30ca599f1114a7151e3</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EEqXwAnCxxDnF6584PpaIQqQiDi0HTpZJHEhJ6mAnEn17XFpx2h3tfLvaQegayAyAqLt1viqKGSWgZjRTkAp-giYgRJYwqeB033OVSMnlOboIYUMIVYTRCXq7b135ZSv8bH6abuxw7ry328G7fodz3wzWN26L5-2Hi-Kzw7XzOG_HEAfJqjc-WLzaRdXhoopcUzelGSISLtFZbdpgr451il4XD-v8KVm-PBb5fJmUVIkhYRVPeS2VsDWR0qaS0_fMlCWn1AhWmfiOoIYqajnhhpHSCKVqAOBGggDLpuj2sLf37nu0YdAbN_ptPKkpiz7IOOfRRQ-u0rsQvK1175vO-J0GovcR6r8I9T5CfYwwQjcHqLHW_gNZSlLIFPsF8yFtfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311118444</pqid></control><display><type>article</type><title>Blocked Maximum Correntropy Criterion Algorithm for Cluster-Sparse System Identifications</title><source>IEEE</source><creator>Li, Yingsong ; Jiang, Zhengxiong ; Shi, Wanlu ; Han, Xiao ; Chen, Badong</creator><creatorcontrib>Li, Yingsong ; Jiang, Zhengxiong ; Shi, Wanlu ; Han, Xiao ; Chen, Badong</creatorcontrib><description>A blocked proportionate normalized maximum correntropy criterion (PNMCC) is presented to improve the estimation behavior of the traditional maximum correntropy criterion (MCC) algorithm for identifying the blocked sparse systems. The proposed blocked MCC is implemented by constructing a new cost function based on a hybrid-norm constraint (HNC) of the filter coefficient vector to adaptively utilize the cluster-sparse characteristic of unknown systems, denoting as hybrid-norm constrained PNMCC (HNC-PNMCC). The proposed HNC-PNMCC algorithm is achieved by using the basis pursuit. Various simulations are brought out to confirm the validity of the HNC-PNMCC. Simulation results indicate that the HNC-PNMCC is better than the PNMCC, MCC, and sparse MCC with respect to the estimation performance for the cluster-sparse system identification under the impulsive noises.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2019.2891654</identifier><identifier>CODEN: ICSPE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;l ; Algorithms ; Circuits and systems ; cluster-sparse system ; Clustering algorithms ; Clusters ; Computer simulation ; Constraints ; Convergence ; Cost function ; Criteria ; Dispersion ; Estimation ; Hybrid systems ; impulsive noise environments ; Indexes ; Kernel ; Maximum correntropy criterion ; norm ; PNMCC algorithm ; System identification</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2019-11, Vol.66 (11), p.1915-1919</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-3d464f795ef077e6742b8acc422a53da28952a292e404a30ca599f1114a7151e3</citedby><cites>FETCH-LOGICAL-c295t-3d464f795ef077e6742b8acc422a53da28952a292e404a30ca599f1114a7151e3</cites><orcidid>0000-0003-3915-8043 ; 0000-0003-1710-3818 ; 0000-0003-3457-2077 ; 0000-0002-2450-6028</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8606189$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8606189$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Yingsong</creatorcontrib><creatorcontrib>Jiang, Zhengxiong</creatorcontrib><creatorcontrib>Shi, Wanlu</creatorcontrib><creatorcontrib>Han, Xiao</creatorcontrib><creatorcontrib>Chen, Badong</creatorcontrib><title>Blocked Maximum Correntropy Criterion Algorithm for Cluster-Sparse System Identifications</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>A blocked proportionate normalized maximum correntropy criterion (PNMCC) is presented to improve the estimation behavior of the traditional maximum correntropy criterion (MCC) algorithm for identifying the blocked sparse systems. The proposed blocked MCC is implemented by constructing a new cost function based on a hybrid-norm constraint (HNC) of the filter coefficient vector to adaptively utilize the cluster-sparse characteristic of unknown systems, denoting as hybrid-norm constrained PNMCC (HNC-PNMCC). The proposed HNC-PNMCC algorithm is achieved by using the basis pursuit. Various simulations are brought out to confirm the validity of the HNC-PNMCC. Simulation results indicate that the HNC-PNMCC is better than the PNMCC, MCC, and sparse MCC with respect to the estimation performance for the cluster-sparse system identification under the impulsive noises.</description><subject>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;l</subject><subject>Algorithms</subject><subject>Circuits and systems</subject><subject>cluster-sparse system</subject><subject>Clustering algorithms</subject><subject>Clusters</subject><subject>Computer simulation</subject><subject>Constraints</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Criteria</subject><subject>Dispersion</subject><subject>Estimation</subject><subject>Hybrid systems</subject><subject>impulsive noise environments</subject><subject>Indexes</subject><subject>Kernel</subject><subject>Maximum correntropy criterion</subject><subject>norm</subject><subject>PNMCC algorithm</subject><subject>System identification</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1OwzAQhC0EEqXwAnCxxDnF6584PpaIQqQiDi0HTpZJHEhJ6mAnEn17XFpx2h3tfLvaQegayAyAqLt1viqKGSWgZjRTkAp-giYgRJYwqeB033OVSMnlOboIYUMIVYTRCXq7b135ZSv8bH6abuxw7ry328G7fodz3wzWN26L5-2Hi-Kzw7XzOG_HEAfJqjc-WLzaRdXhoopcUzelGSISLtFZbdpgr451il4XD-v8KVm-PBb5fJmUVIkhYRVPeS2VsDWR0qaS0_fMlCWn1AhWmfiOoIYqajnhhpHSCKVqAOBGggDLpuj2sLf37nu0YdAbN_ptPKkpiz7IOOfRRQ-u0rsQvK1175vO-J0GovcR6r8I9T5CfYwwQjcHqLHW_gNZSlLIFPsF8yFtfA</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Li, Yingsong</creator><creator>Jiang, Zhengxiong</creator><creator>Shi, Wanlu</creator><creator>Han, Xiao</creator><creator>Chen, Badong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3915-8043</orcidid><orcidid>https://orcid.org/0000-0003-1710-3818</orcidid><orcidid>https://orcid.org/0000-0003-3457-2077</orcidid><orcidid>https://orcid.org/0000-0002-2450-6028</orcidid></search><sort><creationdate>20191101</creationdate><title>Blocked Maximum Correntropy Criterion Algorithm for Cluster-Sparse System Identifications</title><author>Li, Yingsong ; Jiang, Zhengxiong ; Shi, Wanlu ; Han, Xiao ; Chen, Badong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-3d464f795ef077e6742b8acc422a53da28952a292e404a30ca599f1114a7151e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt;l</topic><topic>Algorithms</topic><topic>Circuits and systems</topic><topic>cluster-sparse system</topic><topic>Clustering algorithms</topic><topic>Clusters</topic><topic>Computer simulation</topic><topic>Constraints</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Criteria</topic><topic>Dispersion</topic><topic>Estimation</topic><topic>Hybrid systems</topic><topic>impulsive noise environments</topic><topic>Indexes</topic><topic>Kernel</topic><topic>Maximum correntropy criterion</topic><topic>norm</topic><topic>PNMCC algorithm</topic><topic>System identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yingsong</creatorcontrib><creatorcontrib>Jiang, Zhengxiong</creatorcontrib><creatorcontrib>Shi, Wanlu</creatorcontrib><creatorcontrib>Han, Xiao</creatorcontrib><creatorcontrib>Chen, Badong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yingsong</au><au>Jiang, Zhengxiong</au><au>Shi, Wanlu</au><au>Han, Xiao</au><au>Chen, Badong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blocked Maximum Correntropy Criterion Algorithm for Cluster-Sparse System Identifications</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>66</volume><issue>11</issue><spage>1915</spage><epage>1919</epage><pages>1915-1919</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ICSPE5</coden><abstract>A blocked proportionate normalized maximum correntropy criterion (PNMCC) is presented to improve the estimation behavior of the traditional maximum correntropy criterion (MCC) algorithm for identifying the blocked sparse systems. The proposed blocked MCC is implemented by constructing a new cost function based on a hybrid-norm constraint (HNC) of the filter coefficient vector to adaptively utilize the cluster-sparse characteristic of unknown systems, denoting as hybrid-norm constrained PNMCC (HNC-PNMCC). The proposed HNC-PNMCC algorithm is achieved by using the basis pursuit. Various simulations are brought out to confirm the validity of the HNC-PNMCC. Simulation results indicate that the HNC-PNMCC is better than the PNMCC, MCC, and sparse MCC with respect to the estimation performance for the cluster-sparse system identification under the impulsive noises.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2019.2891654</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-3915-8043</orcidid><orcidid>https://orcid.org/0000-0003-1710-3818</orcidid><orcidid>https://orcid.org/0000-0003-3457-2077</orcidid><orcidid>https://orcid.org/0000-0002-2450-6028</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2019-11, Vol.66 (11), p.1915-1919
issn 1549-7747
1558-3791
language eng
recordid cdi_ieee_primary_8606189
source IEEE
subjects <italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">l
Algorithms
Circuits and systems
cluster-sparse system
Clustering algorithms
Clusters
Computer simulation
Constraints
Convergence
Cost function
Criteria
Dispersion
Estimation
Hybrid systems
impulsive noise environments
Indexes
Kernel
Maximum correntropy criterion
norm
PNMCC algorithm
System identification
title Blocked Maximum Correntropy Criterion Algorithm for Cluster-Sparse System Identifications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A13%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blocked%20Maximum%20Correntropy%20Criterion%20Algorithm%20for%20Cluster-Sparse%20System%20Identifications&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Li,%20Yingsong&rft.date=2019-11-01&rft.volume=66&rft.issue=11&rft.spage=1915&rft.epage=1919&rft.pages=1915-1919&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ICSPE5&rft_id=info:doi/10.1109/TCSII.2019.2891654&rft_dat=%3Cproquest_RIE%3E2311118444%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311118444&rft_id=info:pmid/&rft_ieee_id=8606189&rfr_iscdi=true