Blocked Maximum Correntropy Criterion Algorithm for Cluster-Sparse System Identifications

A blocked proportionate normalized maximum correntropy criterion (PNMCC) is presented to improve the estimation behavior of the traditional maximum correntropy criterion (MCC) algorithm for identifying the blocked sparse systems. The proposed blocked MCC is implemented by constructing a new cost fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2019-11, Vol.66 (11), p.1915-1919
Hauptverfasser: Li, Yingsong, Jiang, Zhengxiong, Shi, Wanlu, Han, Xiao, Chen, Badong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A blocked proportionate normalized maximum correntropy criterion (PNMCC) is presented to improve the estimation behavior of the traditional maximum correntropy criterion (MCC) algorithm for identifying the blocked sparse systems. The proposed blocked MCC is implemented by constructing a new cost function based on a hybrid-norm constraint (HNC) of the filter coefficient vector to adaptively utilize the cluster-sparse characteristic of unknown systems, denoting as hybrid-norm constrained PNMCC (HNC-PNMCC). The proposed HNC-PNMCC algorithm is achieved by using the basis pursuit. Various simulations are brought out to confirm the validity of the HNC-PNMCC. Simulation results indicate that the HNC-PNMCC is better than the PNMCC, MCC, and sparse MCC with respect to the estimation performance for the cluster-sparse system identification under the impulsive noises.
ISSN:1549-7747
1558-3791
DOI:10.1109/TCSII.2019.2891654