Sparse2Dense: From Direct Sparse Odometry to Dense 3-D Reconstruction
In this letter, we proposed a new deep learning based dense monocular simultaneous localization and mapping (SLAM) method. Compared to existing methods, the proposed framework constructs a dense three-dimensional (3-D) model via a sparse to dense mapping using learned surface normals. With single vi...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2019-04, Vol.4 (2), p.530-537 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this letter, we proposed a new deep learning based dense monocular simultaneous localization and mapping (SLAM) method. Compared to existing methods, the proposed framework constructs a dense three-dimensional (3-D) model via a sparse to dense mapping using learned surface normals. With single view learned depth estimation as prior for monocular visual odometry, we obtain both accurate positioning and high-quality depth reconstruction. The depth and normal are predicted by a single network trained in a tightly coupled manner. Experimental results show that our method significantly improves the performance of visual tracking and depth prediction in comparison to the state-of-the-art in deep monocular dense SLAM. |
---|---|
ISSN: | 2377-3766 2377-3766 |
DOI: | 10.1109/LRA.2019.2891433 |