A Method for Determining the Length of FBG Sensors Accurately

In this letter, we propose a method for estimating the length of single-mode fiber Bragg grating type sensors with high accuracy. Our method is based on calculating the maximum oscillation frequency of the side-lobes of the FBG reflection spectrum. We show that this frequency is independent of the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics technology letters 2019-01, Vol.31 (2), p.197-200
Hauptverfasser: Rajabzadeh, Aydin, Heusdens, Richard, Hendriks, Richard C., Groves, Roger M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this letter, we propose a method for estimating the length of single-mode fiber Bragg grating type sensors with high accuracy. Our method is based on calculating the maximum oscillation frequency of the side-lobes of the FBG reflection spectrum. We show that this frequency is independent of the stress field to which the sensor is subjected, and is dependent on the length of the sensor. This method can be used to characterize the gauge length of already installed FBG sensors so that they can provide useful data for engineering models of structural integrity. All the analyses are based on the approximated transfer matrix model, which is a newly developed numerical method for the analysis of the FBG reflection spectrum under various stress fields.
ISSN:1041-1135
1941-0174
DOI:10.1109/LPT.2019.2891009