Unlocking Author Power: On the Exploitation of Auxiliary Author-Retweeter Relations for Predicting Key Retweeters

Retweeting is a powerful driving force in information propagation on microblogging sites. However, identifying the most effective retweeters of a message (called the "key retweeter prediction" problem) has become a significant research topic. Conventional approaches have addressed this top...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2020-03, Vol.32 (3), p.547-559
Hauptverfasser: Wu, Bo, Cheng, Wen-Huang, Zhang, Yongdong, Cao, Juan, Li, Jintao, Mei, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 559
container_issue 3
container_start_page 547
container_title IEEE transactions on knowledge and data engineering
container_volume 32
creator Wu, Bo
Cheng, Wen-Huang
Zhang, Yongdong
Cao, Juan
Li, Jintao
Mei, Tao
description Retweeting is a powerful driving force in information propagation on microblogging sites. However, identifying the most effective retweeters of a message (called the "key retweeter prediction" problem) has become a significant research topic. Conventional approaches have addressed this topic from two main aspects: by analyzing either the personal attributes of microblogging users or the structures of user graph networks. However, according to sociological findings, author-retweeter dependencies also play a crucial role in influencing message propagation. In this paper, we propose a novel model to solve the key retweeter prediction problem by incorporating the auxiliary relations between a tweet author and potential retweeters. Without loss of generality, we formulate the relations from four relational factors: status relation, temporal relation, locational relation, and interactive relation. In addition, we propose a novel method, called "Relation-based Learning to Rank (RL2R)," to determine the key retweeters for a given tweet by ranking the potential retweeters in terms of their spreadability. The experimental results show that our method outperforms the state-of-the-art algorithms at top-k retweeter prediction, achieving a significant relative average improvement of 19.7-29.4 percent. These findings provide new insights for understanding user behaviors on social media for key retweeter prediction purposes.
doi_str_mv 10.1109/TKDE.2018.2889664
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8590815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8590815</ieee_id><sourcerecordid>2352193222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a1c327f5ad2a1242df45930cde89c0f5c7692c329f09f5e3eb8e20ffe82354523</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYj-AOOliefFfmzZ1htB_AgkGALnzdqdyuK6hbYE-Pd2hXCaOTzvO5kHoXtKepQS9TQfv4x6jFDZY1Kqfj-9QB0qhEwYVfQy7iSlScrT7BrdeL8ihMhM0g7aLJra6p-q-caDbVhahz_tDtwznjY4LAGP9uvaVqEIlW2wNRHaV3VVuMMJT2YQdgABHJ5B_Y95bNoaB2WlQ1s8hgM-Y_4WXZmi9nB3ml20eB3Nh-_JZPr2MRxMEs0UD0lBNWeZEUXJCspSVppUKE50CVJpYoTO-opFRBmijAAOXxIYMQYk4yIVjHfR47F37exmCz7kK7t1TTyZRyJq4Yy1FD1S2lnvHZh87arf-F9OSd6azVuzeWs2P5mNmYdjpgKAMy-FIpIK_gdakHX0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352193222</pqid></control><display><type>article</type><title>Unlocking Author Power: On the Exploitation of Auxiliary Author-Retweeter Relations for Predicting Key Retweeters</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Bo ; Cheng, Wen-Huang ; Zhang, Yongdong ; Cao, Juan ; Li, Jintao ; Mei, Tao</creator><creatorcontrib>Wu, Bo ; Cheng, Wen-Huang ; Zhang, Yongdong ; Cao, Juan ; Li, Jintao ; Mei, Tao</creatorcontrib><description>Retweeting is a powerful driving force in information propagation on microblogging sites. However, identifying the most effective retweeters of a message (called the "key retweeter prediction" problem) has become a significant research topic. Conventional approaches have addressed this topic from two main aspects: by analyzing either the personal attributes of microblogging users or the structures of user graph networks. However, according to sociological findings, author-retweeter dependencies also play a crucial role in influencing message propagation. In this paper, we propose a novel model to solve the key retweeter prediction problem by incorporating the auxiliary relations between a tweet author and potential retweeters. Without loss of generality, we formulate the relations from four relational factors: status relation, temporal relation, locational relation, and interactive relation. In addition, we propose a novel method, called "Relation-based Learning to Rank (RL2R)," to determine the key retweeters for a given tweet by ranking the potential retweeters in terms of their spreadability. The experimental results show that our method outperforms the state-of-the-art algorithms at top-k retweeter prediction, achieving a significant relative average improvement of 19.7-29.4 percent. These findings provide new insights for understanding user behaviors on social media for key retweeter prediction purposes.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2018.2889664</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computers ; Digital media ; Information dissemination ; Information processing ; information propagation ; key retweeter prediction ; Microblogging ; Prediction algorithms ; Predictions ; Predictive models ; Social network services ; Social networks ; Task analysis ; Technological innovation ; user behavior</subject><ispartof>IEEE transactions on knowledge and data engineering, 2020-03, Vol.32 (3), p.547-559</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a1c327f5ad2a1242df45930cde89c0f5c7692c329f09f5e3eb8e20ffe82354523</citedby><cites>FETCH-LOGICAL-c293t-a1c327f5ad2a1242df45930cde89c0f5c7692c329f09f5e3eb8e20ffe82354523</cites><orcidid>0000-0003-2497-7732 ; 0000-0001-6658-6452 ; 0000-0003-4124-547X ; 0000-0002-1151-1792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8590815$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8590815$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Bo</creatorcontrib><creatorcontrib>Cheng, Wen-Huang</creatorcontrib><creatorcontrib>Zhang, Yongdong</creatorcontrib><creatorcontrib>Cao, Juan</creatorcontrib><creatorcontrib>Li, Jintao</creatorcontrib><creatorcontrib>Mei, Tao</creatorcontrib><title>Unlocking Author Power: On the Exploitation of Auxiliary Author-Retweeter Relations for Predicting Key Retweeters</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Retweeting is a powerful driving force in information propagation on microblogging sites. However, identifying the most effective retweeters of a message (called the "key retweeter prediction" problem) has become a significant research topic. Conventional approaches have addressed this topic from two main aspects: by analyzing either the personal attributes of microblogging users or the structures of user graph networks. However, according to sociological findings, author-retweeter dependencies also play a crucial role in influencing message propagation. In this paper, we propose a novel model to solve the key retweeter prediction problem by incorporating the auxiliary relations between a tweet author and potential retweeters. Without loss of generality, we formulate the relations from four relational factors: status relation, temporal relation, locational relation, and interactive relation. In addition, we propose a novel method, called "Relation-based Learning to Rank (RL2R)," to determine the key retweeters for a given tweet by ranking the potential retweeters in terms of their spreadability. The experimental results show that our method outperforms the state-of-the-art algorithms at top-k retweeter prediction, achieving a significant relative average improvement of 19.7-29.4 percent. These findings provide new insights for understanding user behaviors on social media for key retweeter prediction purposes.</description><subject>Algorithms</subject><subject>Computers</subject><subject>Digital media</subject><subject>Information dissemination</subject><subject>Information processing</subject><subject>information propagation</subject><subject>key retweeter prediction</subject><subject>Microblogging</subject><subject>Prediction algorithms</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Social network services</subject><subject>Social networks</subject><subject>Task analysis</subject><subject>Technological innovation</subject><subject>user behavior</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYj-AOOliefFfmzZ1htB_AgkGALnzdqdyuK6hbYE-Pd2hXCaOTzvO5kHoXtKepQS9TQfv4x6jFDZY1Kqfj-9QB0qhEwYVfQy7iSlScrT7BrdeL8ihMhM0g7aLJra6p-q-caDbVhahz_tDtwznjY4LAGP9uvaVqEIlW2wNRHaV3VVuMMJT2YQdgABHJ5B_Y95bNoaB2WlQ1s8hgM-Y_4WXZmi9nB3ml20eB3Nh-_JZPr2MRxMEs0UD0lBNWeZEUXJCspSVppUKE50CVJpYoTO-opFRBmijAAOXxIYMQYk4yIVjHfR47F37exmCz7kK7t1TTyZRyJq4Yy1FD1S2lnvHZh87arf-F9OSd6azVuzeWs2P5mNmYdjpgKAMy-FIpIK_gdakHX0</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Wu, Bo</creator><creator>Cheng, Wen-Huang</creator><creator>Zhang, Yongdong</creator><creator>Cao, Juan</creator><creator>Li, Jintao</creator><creator>Mei, Tao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2497-7732</orcidid><orcidid>https://orcid.org/0000-0001-6658-6452</orcidid><orcidid>https://orcid.org/0000-0003-4124-547X</orcidid><orcidid>https://orcid.org/0000-0002-1151-1792</orcidid></search><sort><creationdate>20200301</creationdate><title>Unlocking Author Power: On the Exploitation of Auxiliary Author-Retweeter Relations for Predicting Key Retweeters</title><author>Wu, Bo ; Cheng, Wen-Huang ; Zhang, Yongdong ; Cao, Juan ; Li, Jintao ; Mei, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a1c327f5ad2a1242df45930cde89c0f5c7692c329f09f5e3eb8e20ffe82354523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computers</topic><topic>Digital media</topic><topic>Information dissemination</topic><topic>Information processing</topic><topic>information propagation</topic><topic>key retweeter prediction</topic><topic>Microblogging</topic><topic>Prediction algorithms</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Social network services</topic><topic>Social networks</topic><topic>Task analysis</topic><topic>Technological innovation</topic><topic>user behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Bo</creatorcontrib><creatorcontrib>Cheng, Wen-Huang</creatorcontrib><creatorcontrib>Zhang, Yongdong</creatorcontrib><creatorcontrib>Cao, Juan</creatorcontrib><creatorcontrib>Li, Jintao</creatorcontrib><creatorcontrib>Mei, Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Bo</au><au>Cheng, Wen-Huang</au><au>Zhang, Yongdong</au><au>Cao, Juan</au><au>Li, Jintao</au><au>Mei, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unlocking Author Power: On the Exploitation of Auxiliary Author-Retweeter Relations for Predicting Key Retweeters</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>32</volume><issue>3</issue><spage>547</spage><epage>559</epage><pages>547-559</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Retweeting is a powerful driving force in information propagation on microblogging sites. However, identifying the most effective retweeters of a message (called the "key retweeter prediction" problem) has become a significant research topic. Conventional approaches have addressed this topic from two main aspects: by analyzing either the personal attributes of microblogging users or the structures of user graph networks. However, according to sociological findings, author-retweeter dependencies also play a crucial role in influencing message propagation. In this paper, we propose a novel model to solve the key retweeter prediction problem by incorporating the auxiliary relations between a tweet author and potential retweeters. Without loss of generality, we formulate the relations from four relational factors: status relation, temporal relation, locational relation, and interactive relation. In addition, we propose a novel method, called "Relation-based Learning to Rank (RL2R)," to determine the key retweeters for a given tweet by ranking the potential retweeters in terms of their spreadability. The experimental results show that our method outperforms the state-of-the-art algorithms at top-k retweeter prediction, achieving a significant relative average improvement of 19.7-29.4 percent. These findings provide new insights for understanding user behaviors on social media for key retweeter prediction purposes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2018.2889664</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2497-7732</orcidid><orcidid>https://orcid.org/0000-0001-6658-6452</orcidid><orcidid>https://orcid.org/0000-0003-4124-547X</orcidid><orcidid>https://orcid.org/0000-0002-1151-1792</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2020-03, Vol.32 (3), p.547-559
issn 1041-4347
1558-2191
language eng
recordid cdi_ieee_primary_8590815
source IEEE Electronic Library (IEL)
subjects Algorithms
Computers
Digital media
Information dissemination
Information processing
information propagation
key retweeter prediction
Microblogging
Prediction algorithms
Predictions
Predictive models
Social network services
Social networks
Task analysis
Technological innovation
user behavior
title Unlocking Author Power: On the Exploitation of Auxiliary Author-Retweeter Relations for Predicting Key Retweeters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unlocking%20Author%20Power:%20On%20the%20Exploitation%20of%20Auxiliary%20Author-Retweeter%20Relations%20for%20Predicting%20Key%20Retweeters&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Wu,%20Bo&rft.date=2020-03-01&rft.volume=32&rft.issue=3&rft.spage=547&rft.epage=559&rft.pages=547-559&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2018.2889664&rft_dat=%3Cproquest_RIE%3E2352193222%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352193222&rft_id=info:pmid/&rft_ieee_id=8590815&rfr_iscdi=true