Unlocking Author Power: On the Exploitation of Auxiliary Author-Retweeter Relations for Predicting Key Retweeters
Retweeting is a powerful driving force in information propagation on microblogging sites. However, identifying the most effective retweeters of a message (called the "key retweeter prediction" problem) has become a significant research topic. Conventional approaches have addressed this top...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2020-03, Vol.32 (3), p.547-559 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 559 |
---|---|
container_issue | 3 |
container_start_page | 547 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 32 |
creator | Wu, Bo Cheng, Wen-Huang Zhang, Yongdong Cao, Juan Li, Jintao Mei, Tao |
description | Retweeting is a powerful driving force in information propagation on microblogging sites. However, identifying the most effective retweeters of a message (called the "key retweeter prediction" problem) has become a significant research topic. Conventional approaches have addressed this topic from two main aspects: by analyzing either the personal attributes of microblogging users or the structures of user graph networks. However, according to sociological findings, author-retweeter dependencies also play a crucial role in influencing message propagation. In this paper, we propose a novel model to solve the key retweeter prediction problem by incorporating the auxiliary relations between a tweet author and potential retweeters. Without loss of generality, we formulate the relations from four relational factors: status relation, temporal relation, locational relation, and interactive relation. In addition, we propose a novel method, called "Relation-based Learning to Rank (RL2R)," to determine the key retweeters for a given tweet by ranking the potential retweeters in terms of their spreadability. The experimental results show that our method outperforms the state-of-the-art algorithms at top-k retweeter prediction, achieving a significant relative average improvement of 19.7-29.4 percent. These findings provide new insights for understanding user behaviors on social media for key retweeter prediction purposes. |
doi_str_mv | 10.1109/TKDE.2018.2889664 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8590815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8590815</ieee_id><sourcerecordid>2352193222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a1c327f5ad2a1242df45930cde89c0f5c7692c329f09f5e3eb8e20ffe82354523</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYj-AOOliefFfmzZ1htB_AgkGALnzdqdyuK6hbYE-Pd2hXCaOTzvO5kHoXtKepQS9TQfv4x6jFDZY1Kqfj-9QB0qhEwYVfQy7iSlScrT7BrdeL8ihMhM0g7aLJra6p-q-caDbVhahz_tDtwznjY4LAGP9uvaVqEIlW2wNRHaV3VVuMMJT2YQdgABHJ5B_Y95bNoaB2WlQ1s8hgM-Y_4WXZmi9nB3ml20eB3Nh-_JZPr2MRxMEs0UD0lBNWeZEUXJCspSVppUKE50CVJpYoTO-opFRBmijAAOXxIYMQYk4yIVjHfR47F37exmCz7kK7t1TTyZRyJq4Yy1FD1S2lnvHZh87arf-F9OSd6azVuzeWs2P5mNmYdjpgKAMy-FIpIK_gdakHX0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2352193222</pqid></control><display><type>article</type><title>Unlocking Author Power: On the Exploitation of Auxiliary Author-Retweeter Relations for Predicting Key Retweeters</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Bo ; Cheng, Wen-Huang ; Zhang, Yongdong ; Cao, Juan ; Li, Jintao ; Mei, Tao</creator><creatorcontrib>Wu, Bo ; Cheng, Wen-Huang ; Zhang, Yongdong ; Cao, Juan ; Li, Jintao ; Mei, Tao</creatorcontrib><description>Retweeting is a powerful driving force in information propagation on microblogging sites. However, identifying the most effective retweeters of a message (called the "key retweeter prediction" problem) has become a significant research topic. Conventional approaches have addressed this topic from two main aspects: by analyzing either the personal attributes of microblogging users or the structures of user graph networks. However, according to sociological findings, author-retweeter dependencies also play a crucial role in influencing message propagation. In this paper, we propose a novel model to solve the key retweeter prediction problem by incorporating the auxiliary relations between a tweet author and potential retweeters. Without loss of generality, we formulate the relations from four relational factors: status relation, temporal relation, locational relation, and interactive relation. In addition, we propose a novel method, called "Relation-based Learning to Rank (RL2R)," to determine the key retweeters for a given tweet by ranking the potential retweeters in terms of their spreadability. The experimental results show that our method outperforms the state-of-the-art algorithms at top-k retweeter prediction, achieving a significant relative average improvement of 19.7-29.4 percent. These findings provide new insights for understanding user behaviors on social media for key retweeter prediction purposes.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2018.2889664</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computers ; Digital media ; Information dissemination ; Information processing ; information propagation ; key retweeter prediction ; Microblogging ; Prediction algorithms ; Predictions ; Predictive models ; Social network services ; Social networks ; Task analysis ; Technological innovation ; user behavior</subject><ispartof>IEEE transactions on knowledge and data engineering, 2020-03, Vol.32 (3), p.547-559</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a1c327f5ad2a1242df45930cde89c0f5c7692c329f09f5e3eb8e20ffe82354523</citedby><cites>FETCH-LOGICAL-c293t-a1c327f5ad2a1242df45930cde89c0f5c7692c329f09f5e3eb8e20ffe82354523</cites><orcidid>0000-0003-2497-7732 ; 0000-0001-6658-6452 ; 0000-0003-4124-547X ; 0000-0002-1151-1792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8590815$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8590815$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Bo</creatorcontrib><creatorcontrib>Cheng, Wen-Huang</creatorcontrib><creatorcontrib>Zhang, Yongdong</creatorcontrib><creatorcontrib>Cao, Juan</creatorcontrib><creatorcontrib>Li, Jintao</creatorcontrib><creatorcontrib>Mei, Tao</creatorcontrib><title>Unlocking Author Power: On the Exploitation of Auxiliary Author-Retweeter Relations for Predicting Key Retweeters</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Retweeting is a powerful driving force in information propagation on microblogging sites. However, identifying the most effective retweeters of a message (called the "key retweeter prediction" problem) has become a significant research topic. Conventional approaches have addressed this topic from two main aspects: by analyzing either the personal attributes of microblogging users or the structures of user graph networks. However, according to sociological findings, author-retweeter dependencies also play a crucial role in influencing message propagation. In this paper, we propose a novel model to solve the key retweeter prediction problem by incorporating the auxiliary relations between a tweet author and potential retweeters. Without loss of generality, we formulate the relations from four relational factors: status relation, temporal relation, locational relation, and interactive relation. In addition, we propose a novel method, called "Relation-based Learning to Rank (RL2R)," to determine the key retweeters for a given tweet by ranking the potential retweeters in terms of their spreadability. The experimental results show that our method outperforms the state-of-the-art algorithms at top-k retweeter prediction, achieving a significant relative average improvement of 19.7-29.4 percent. These findings provide new insights for understanding user behaviors on social media for key retweeter prediction purposes.</description><subject>Algorithms</subject><subject>Computers</subject><subject>Digital media</subject><subject>Information dissemination</subject><subject>Information processing</subject><subject>information propagation</subject><subject>key retweeter prediction</subject><subject>Microblogging</subject><subject>Prediction algorithms</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Social network services</subject><subject>Social networks</subject><subject>Task analysis</subject><subject>Technological innovation</subject><subject>user behavior</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PAjEQhhujiYj-AOOliefFfmzZ1htB_AgkGALnzdqdyuK6hbYE-Pd2hXCaOTzvO5kHoXtKepQS9TQfv4x6jFDZY1Kqfj-9QB0qhEwYVfQy7iSlScrT7BrdeL8ihMhM0g7aLJra6p-q-caDbVhahz_tDtwznjY4LAGP9uvaVqEIlW2wNRHaV3VVuMMJT2YQdgABHJ5B_Y95bNoaB2WlQ1s8hgM-Y_4WXZmi9nB3ml20eB3Nh-_JZPr2MRxMEs0UD0lBNWeZEUXJCspSVppUKE50CVJpYoTO-opFRBmijAAOXxIYMQYk4yIVjHfR47F37exmCz7kK7t1TTyZRyJq4Yy1FD1S2lnvHZh87arf-F9OSd6azVuzeWs2P5mNmYdjpgKAMy-FIpIK_gdakHX0</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Wu, Bo</creator><creator>Cheng, Wen-Huang</creator><creator>Zhang, Yongdong</creator><creator>Cao, Juan</creator><creator>Li, Jintao</creator><creator>Mei, Tao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2497-7732</orcidid><orcidid>https://orcid.org/0000-0001-6658-6452</orcidid><orcidid>https://orcid.org/0000-0003-4124-547X</orcidid><orcidid>https://orcid.org/0000-0002-1151-1792</orcidid></search><sort><creationdate>20200301</creationdate><title>Unlocking Author Power: On the Exploitation of Auxiliary Author-Retweeter Relations for Predicting Key Retweeters</title><author>Wu, Bo ; Cheng, Wen-Huang ; Zhang, Yongdong ; Cao, Juan ; Li, Jintao ; Mei, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a1c327f5ad2a1242df45930cde89c0f5c7692c329f09f5e3eb8e20ffe82354523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computers</topic><topic>Digital media</topic><topic>Information dissemination</topic><topic>Information processing</topic><topic>information propagation</topic><topic>key retweeter prediction</topic><topic>Microblogging</topic><topic>Prediction algorithms</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Social network services</topic><topic>Social networks</topic><topic>Task analysis</topic><topic>Technological innovation</topic><topic>user behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Bo</creatorcontrib><creatorcontrib>Cheng, Wen-Huang</creatorcontrib><creatorcontrib>Zhang, Yongdong</creatorcontrib><creatorcontrib>Cao, Juan</creatorcontrib><creatorcontrib>Li, Jintao</creatorcontrib><creatorcontrib>Mei, Tao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Bo</au><au>Cheng, Wen-Huang</au><au>Zhang, Yongdong</au><au>Cao, Juan</au><au>Li, Jintao</au><au>Mei, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unlocking Author Power: On the Exploitation of Auxiliary Author-Retweeter Relations for Predicting Key Retweeters</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>32</volume><issue>3</issue><spage>547</spage><epage>559</epage><pages>547-559</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Retweeting is a powerful driving force in information propagation on microblogging sites. However, identifying the most effective retweeters of a message (called the "key retweeter prediction" problem) has become a significant research topic. Conventional approaches have addressed this topic from two main aspects: by analyzing either the personal attributes of microblogging users or the structures of user graph networks. However, according to sociological findings, author-retweeter dependencies also play a crucial role in influencing message propagation. In this paper, we propose a novel model to solve the key retweeter prediction problem by incorporating the auxiliary relations between a tweet author and potential retweeters. Without loss of generality, we formulate the relations from four relational factors: status relation, temporal relation, locational relation, and interactive relation. In addition, we propose a novel method, called "Relation-based Learning to Rank (RL2R)," to determine the key retweeters for a given tweet by ranking the potential retweeters in terms of their spreadability. The experimental results show that our method outperforms the state-of-the-art algorithms at top-k retweeter prediction, achieving a significant relative average improvement of 19.7-29.4 percent. These findings provide new insights for understanding user behaviors on social media for key retweeter prediction purposes.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2018.2889664</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2497-7732</orcidid><orcidid>https://orcid.org/0000-0001-6658-6452</orcidid><orcidid>https://orcid.org/0000-0003-4124-547X</orcidid><orcidid>https://orcid.org/0000-0002-1151-1792</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2020-03, Vol.32 (3), p.547-559 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_ieee_primary_8590815 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Computers Digital media Information dissemination Information processing information propagation key retweeter prediction Microblogging Prediction algorithms Predictions Predictive models Social network services Social networks Task analysis Technological innovation user behavior |
title | Unlocking Author Power: On the Exploitation of Auxiliary Author-Retweeter Relations for Predicting Key Retweeters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unlocking%20Author%20Power:%20On%20the%20Exploitation%20of%20Auxiliary%20Author-Retweeter%20Relations%20for%20Predicting%20Key%20Retweeters&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Wu,%20Bo&rft.date=2020-03-01&rft.volume=32&rft.issue=3&rft.spage=547&rft.epage=559&rft.pages=547-559&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2018.2889664&rft_dat=%3Cproquest_RIE%3E2352193222%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2352193222&rft_id=info:pmid/&rft_ieee_id=8590815&rfr_iscdi=true |