Unlocking Author Power: On the Exploitation of Auxiliary Author-Retweeter Relations for Predicting Key Retweeters

Retweeting is a powerful driving force in information propagation on microblogging sites. However, identifying the most effective retweeters of a message (called the "key retweeter prediction" problem) has become a significant research topic. Conventional approaches have addressed this top...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2020-03, Vol.32 (3), p.547-559
Hauptverfasser: Wu, Bo, Cheng, Wen-Huang, Zhang, Yongdong, Cao, Juan, Li, Jintao, Mei, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Retweeting is a powerful driving force in information propagation on microblogging sites. However, identifying the most effective retweeters of a message (called the "key retweeter prediction" problem) has become a significant research topic. Conventional approaches have addressed this topic from two main aspects: by analyzing either the personal attributes of microblogging users or the structures of user graph networks. However, according to sociological findings, author-retweeter dependencies also play a crucial role in influencing message propagation. In this paper, we propose a novel model to solve the key retweeter prediction problem by incorporating the auxiliary relations between a tweet author and potential retweeters. Without loss of generality, we formulate the relations from four relational factors: status relation, temporal relation, locational relation, and interactive relation. In addition, we propose a novel method, called "Relation-based Learning to Rank (RL2R)," to determine the key retweeters for a given tweet by ranking the potential retweeters in terms of their spreadability. The experimental results show that our method outperforms the state-of-the-art algorithms at top-k retweeter prediction, achieving a significant relative average improvement of 19.7-29.4 percent. These findings provide new insights for understanding user behaviors on social media for key retweeter prediction purposes.
ISSN:1041-4347
1558-2191
DOI:10.1109/TKDE.2018.2889664