Bidirectional Recurrent Auto-Encoder for Photoplethysmogram Denoising
Photoplethysmography (PPG) has become ubiquitous with the development of smart watches and the mobile healthcare market. However, PPG is vulnerable to various types of noises that are ever present in uncontrolled environments, and the key to obtaining meaningful signals depends on successful denoisi...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2019-11, Vol.23 (6), p.2375-2385 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Photoplethysmography (PPG) has become ubiquitous with the development of smart watches and the mobile healthcare market. However, PPG is vulnerable to various types of noises that are ever present in uncontrolled environments, and the key to obtaining meaningful signals depends on successful denoising of PPG. In this context, algorithms have been developed to denoise PPG, but many were validated in controlled settings or are reliant on multiple steps that must all work correctly. This paper proposes a novel PPG denoising algorithm based on bidirectional recurrent denoising auto-encoder (BRDAE) that requires minimal pre-processing steps and have the benefit of waveform feature accentuation beyond simple denoising. The BRDAE was trained and validated on a dataset with artificially augmented noise, and was tested on a large open database of PPG signals collected from patients enrolled in intensive care units as well as from PPG data collected intermittently during the daily routine of nine subjects over 24 h. Denoising with the trained BRDAE improved signalto-noise ratio of the noise-augmented data by 7.9 dB during validation. In the test datasets, the denoised PPG showed statistically significant improvement in heart rate detection as compared with the original PPG in terms of correlation to reference and root-mean-squared error. These results indicate that the proposed method is an effective solution for denoising the PPG signal, and promises values beyond traditional denoising by providing PPG feature accentuation for pulse waveform analysis. |
---|---|
ISSN: | 2168-2194 2168-2208 |
DOI: | 10.1109/JBHI.2018.2885139 |