Deep Convolutional Neural Networks for Link Adaptations in MIMO-OFDM Wireless Systems

This letter proposes a deep convolutional neural network (DCNN) approach for adaptive modulation and coding in practical multiple-input, multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. Our target is to maximize the throughput and fulfill a packet error rate constraint...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2019-06, Vol.8 (3), p.665-668
Hauptverfasser: Elwekeil, Mohamed, Jiang, Shibao, Wang, Taotao, Zhang, Shengli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter proposes a deep convolutional neural network (DCNN) approach for adaptive modulation and coding in practical multiple-input, multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems. Our target is to maximize the throughput and fulfill a packet error rate constraint. We consider practical impairments of MIMO-OFDM receiver, such as imperfect timing synchronization, carrier frequency offset correction, and channel estimation. We treat the estimated channel state information and the noise standard deviation as input features to the DCNN. The main advantages of the proposed approach are: 1) it learns the characteristics of the MIMO-OFDM channel properly and predicts the suitable modulation and coding scheme and 2) it does not need complex features selection.
ISSN:2162-2337
2162-2345
DOI:10.1109/LWC.2018.2881978