Online Maximum-Likelihood Estimation of the Parameters of Partially Observed Diffusion Processes
We revisit the problem of estimating the parameters of a partially observed diffusion process, consisting of a hidden state process and an observed process, with a continuous time parameter. The estimation is to be done online, i.e., the parameter estimate should be updated recursively based on the...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automatic control 2019-07, Vol.64 (7), p.2814-2829 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2829 |
---|---|
container_issue | 7 |
container_start_page | 2814 |
container_title | IEEE transactions on automatic control |
container_volume | 64 |
creator | Surace, Simone Carlo Pfister, Jean-Pascal |
description | We revisit the problem of estimating the parameters of a partially observed diffusion process, consisting of a hidden state process and an observed process, with a continuous time parameter. The estimation is to be done online, i.e., the parameter estimate should be updated recursively based on the observation filtration. We provide a theoretical analysis of the stochastic gradient ascent algorithm on the incomplete-data log-likelihood. The convergence of the algorithm is proved under suitable conditions regarding the ergodicity of the process consisting of state filter, and tangent filter. Additionally, our parameter estimation is shown numerically to have the potential of improving suboptimal filters, and can be applied even when the system is not identifiable due to parameter redundancies. Online parameter estimation is a challenging problem that is ubiquitous in fields such as robotics, neuroscience, or finance in order to design adaptive filters and optimal controllers for unknown or changing systems. Despite this, theoretical analysis of convergence is currently lacking for most of these algorithms. This paper sheds new light on the theory of convergence in continuous time. |
doi_str_mv | 10.1109/TAC.2018.2880404 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8528340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8528340</ieee_id><sourcerecordid>2248674062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-53af31bd1df004b00a7c529089b336d3bef0edd45a8a01798fec43defebed3a83</originalsourceid><addsrcrecordid>eNo9kM1PwzAMxSMEEmNwR-JSiXOH89EuPU5jfEhD22GcQ9o4WkbbjKRD7L-n1RAn69nv2fKPkFsKE0qheNjM5hMGVE6YlCBAnJERzTKZsozxczKCfpQWTOaX5CrGXS9zIeiIfKza2rWYvOkf1xyadOk-sXZb702yiJ1rdOd8m3ibdFtM1jroBjsMcej0qnO6ro_JqowYvtEkj87aQxwS6-ArjBHjNbmwuo5481fH5P1psZm_pMvV8-t8tkwrIfIuzbi2nJaGGgsgSgA9rTJWgCxKznPDS7SAxohMSw10WkiLleAGLZZouJZ8TO5Pe_fBfx0wdmrnD6HtTyrGhMynAnLWu-DkqoKPMaBV-9A_GY6Kgho4qp6jGjiqP4595O4UcYj4b5cZk1wA_wUQ93AM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248674062</pqid></control><display><type>article</type><title>Online Maximum-Likelihood Estimation of the Parameters of Partially Observed Diffusion Processes</title><source>IEEE Electronic Library (IEL)</source><creator>Surace, Simone Carlo ; Pfister, Jean-Pascal</creator><creatorcontrib>Surace, Simone Carlo ; Pfister, Jean-Pascal</creatorcontrib><description>We revisit the problem of estimating the parameters of a partially observed diffusion process, consisting of a hidden state process and an observed process, with a continuous time parameter. The estimation is to be done online, i.e., the parameter estimate should be updated recursively based on the observation filtration. We provide a theoretical analysis of the stochastic gradient ascent algorithm on the incomplete-data log-likelihood. The convergence of the algorithm is proved under suitable conditions regarding the ergodicity of the process consisting of state filter, and tangent filter. Additionally, our parameter estimation is shown numerically to have the potential of improving suboptimal filters, and can be applied even when the system is not identifiable due to parameter redundancies. Online parameter estimation is a challenging problem that is ubiquitous in fields such as robotics, neuroscience, or finance in order to design adaptive filters and optimal controllers for unknown or changing systems. Despite this, theoretical analysis of convergence is currently lacking for most of these algorithms. This paper sheds new light on the theory of convergence in continuous time.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2018.2880404</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive filters ; Adaptive systems ; Algorithms ; Ascent ; Convergence ; Diffusion processes ; filtering theory ; gradient methods ; Maximum likelihood estimation ; Parameter estimation ; Parameter identification ; Robotics ; Signal processing algorithms ; stochastic processes</subject><ispartof>IEEE transactions on automatic control, 2019-07, Vol.64 (7), p.2814-2829</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-53af31bd1df004b00a7c529089b336d3bef0edd45a8a01798fec43defebed3a83</citedby><cites>FETCH-LOGICAL-c446t-53af31bd1df004b00a7c529089b336d3bef0edd45a8a01798fec43defebed3a83</cites><orcidid>0000-0002-1847-3389 ; 0000-0001-9321-6481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8528340$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids></links><search><creatorcontrib>Surace, Simone Carlo</creatorcontrib><creatorcontrib>Pfister, Jean-Pascal</creatorcontrib><title>Online Maximum-Likelihood Estimation of the Parameters of Partially Observed Diffusion Processes</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We revisit the problem of estimating the parameters of a partially observed diffusion process, consisting of a hidden state process and an observed process, with a continuous time parameter. The estimation is to be done online, i.e., the parameter estimate should be updated recursively based on the observation filtration. We provide a theoretical analysis of the stochastic gradient ascent algorithm on the incomplete-data log-likelihood. The convergence of the algorithm is proved under suitable conditions regarding the ergodicity of the process consisting of state filter, and tangent filter. Additionally, our parameter estimation is shown numerically to have the potential of improving suboptimal filters, and can be applied even when the system is not identifiable due to parameter redundancies. Online parameter estimation is a challenging problem that is ubiquitous in fields such as robotics, neuroscience, or finance in order to design adaptive filters and optimal controllers for unknown or changing systems. Despite this, theoretical analysis of convergence is currently lacking for most of these algorithms. This paper sheds new light on the theory of convergence in continuous time.</description><subject>Adaptive filters</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Ascent</subject><subject>Convergence</subject><subject>Diffusion processes</subject><subject>filtering theory</subject><subject>gradient methods</subject><subject>Maximum likelihood estimation</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Robotics</subject><subject>Signal processing algorithms</subject><subject>stochastic processes</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1PwzAMxSMEEmNwR-JSiXOH89EuPU5jfEhD22GcQ9o4WkbbjKRD7L-n1RAn69nv2fKPkFsKE0qheNjM5hMGVE6YlCBAnJERzTKZsozxczKCfpQWTOaX5CrGXS9zIeiIfKza2rWYvOkf1xyadOk-sXZb702yiJ1rdOd8m3ibdFtM1jroBjsMcej0qnO6ro_JqowYvtEkj87aQxwS6-ArjBHjNbmwuo5481fH5P1psZm_pMvV8-t8tkwrIfIuzbi2nJaGGgsgSgA9rTJWgCxKznPDS7SAxohMSw10WkiLleAGLZZouJZ8TO5Pe_fBfx0wdmrnD6HtTyrGhMynAnLWu-DkqoKPMaBV-9A_GY6Kgho4qp6jGjiqP4595O4UcYj4b5cZk1wA_wUQ93AM</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Surace, Simone Carlo</creator><creator>Pfister, Jean-Pascal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1847-3389</orcidid><orcidid>https://orcid.org/0000-0001-9321-6481</orcidid></search><sort><creationdate>20190701</creationdate><title>Online Maximum-Likelihood Estimation of the Parameters of Partially Observed Diffusion Processes</title><author>Surace, Simone Carlo ; Pfister, Jean-Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-53af31bd1df004b00a7c529089b336d3bef0edd45a8a01798fec43defebed3a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive filters</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Ascent</topic><topic>Convergence</topic><topic>Diffusion processes</topic><topic>filtering theory</topic><topic>gradient methods</topic><topic>Maximum likelihood estimation</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Robotics</topic><topic>Signal processing algorithms</topic><topic>stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Surace, Simone Carlo</creatorcontrib><creatorcontrib>Pfister, Jean-Pascal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Surace, Simone Carlo</au><au>Pfister, Jean-Pascal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Maximum-Likelihood Estimation of the Parameters of Partially Observed Diffusion Processes</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>64</volume><issue>7</issue><spage>2814</spage><epage>2829</epage><pages>2814-2829</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We revisit the problem of estimating the parameters of a partially observed diffusion process, consisting of a hidden state process and an observed process, with a continuous time parameter. The estimation is to be done online, i.e., the parameter estimate should be updated recursively based on the observation filtration. We provide a theoretical analysis of the stochastic gradient ascent algorithm on the incomplete-data log-likelihood. The convergence of the algorithm is proved under suitable conditions regarding the ergodicity of the process consisting of state filter, and tangent filter. Additionally, our parameter estimation is shown numerically to have the potential of improving suboptimal filters, and can be applied even when the system is not identifiable due to parameter redundancies. Online parameter estimation is a challenging problem that is ubiquitous in fields such as robotics, neuroscience, or finance in order to design adaptive filters and optimal controllers for unknown or changing systems. Despite this, theoretical analysis of convergence is currently lacking for most of these algorithms. This paper sheds new light on the theory of convergence in continuous time.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2018.2880404</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1847-3389</orcidid><orcidid>https://orcid.org/0000-0001-9321-6481</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9286 |
ispartof | IEEE transactions on automatic control, 2019-07, Vol.64 (7), p.2814-2829 |
issn | 0018-9286 1558-2523 |
language | eng |
recordid | cdi_ieee_primary_8528340 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive filters Adaptive systems Algorithms Ascent Convergence Diffusion processes filtering theory gradient methods Maximum likelihood estimation Parameter estimation Parameter identification Robotics Signal processing algorithms stochastic processes |
title | Online Maximum-Likelihood Estimation of the Parameters of Partially Observed Diffusion Processes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Maximum-Likelihood%20Estimation%20of%20the%20Parameters%20of%20Partially%20Observed%20Diffusion%20Processes&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Surace,%20Simone%20Carlo&rft.date=2019-07-01&rft.volume=64&rft.issue=7&rft.spage=2814&rft.epage=2829&rft.pages=2814-2829&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2018.2880404&rft_dat=%3Cproquest_ieee_%3E2248674062%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2248674062&rft_id=info:pmid/&rft_ieee_id=8528340&rfr_iscdi=true |