Online Maximum-Likelihood Estimation of the Parameters of Partially Observed Diffusion Processes

We revisit the problem of estimating the parameters of a partially observed diffusion process, consisting of a hidden state process and an observed process, with a continuous time parameter. The estimation is to be done online, i.e., the parameter estimate should be updated recursively based on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2019-07, Vol.64 (7), p.2814-2829
Hauptverfasser: Surace, Simone Carlo, Pfister, Jean-Pascal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2829
container_issue 7
container_start_page 2814
container_title IEEE transactions on automatic control
container_volume 64
creator Surace, Simone Carlo
Pfister, Jean-Pascal
description We revisit the problem of estimating the parameters of a partially observed diffusion process, consisting of a hidden state process and an observed process, with a continuous time parameter. The estimation is to be done online, i.e., the parameter estimate should be updated recursively based on the observation filtration. We provide a theoretical analysis of the stochastic gradient ascent algorithm on the incomplete-data log-likelihood. The convergence of the algorithm is proved under suitable conditions regarding the ergodicity of the process consisting of state filter, and tangent filter. Additionally, our parameter estimation is shown numerically to have the potential of improving suboptimal filters, and can be applied even when the system is not identifiable due to parameter redundancies. Online parameter estimation is a challenging problem that is ubiquitous in fields such as robotics, neuroscience, or finance in order to design adaptive filters and optimal controllers for unknown or changing systems. Despite this, theoretical analysis of convergence is currently lacking for most of these algorithms. This paper sheds new light on the theory of convergence in continuous time.
doi_str_mv 10.1109/TAC.2018.2880404
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8528340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8528340</ieee_id><sourcerecordid>2248674062</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-53af31bd1df004b00a7c529089b336d3bef0edd45a8a01798fec43defebed3a83</originalsourceid><addsrcrecordid>eNo9kM1PwzAMxSMEEmNwR-JSiXOH89EuPU5jfEhD22GcQ9o4WkbbjKRD7L-n1RAn69nv2fKPkFsKE0qheNjM5hMGVE6YlCBAnJERzTKZsozxczKCfpQWTOaX5CrGXS9zIeiIfKza2rWYvOkf1xyadOk-sXZb702yiJ1rdOd8m3ibdFtM1jroBjsMcej0qnO6ro_JqowYvtEkj87aQxwS6-ArjBHjNbmwuo5481fH5P1psZm_pMvV8-t8tkwrIfIuzbi2nJaGGgsgSgA9rTJWgCxKznPDS7SAxohMSw10WkiLleAGLZZouJZ8TO5Pe_fBfx0wdmrnD6HtTyrGhMynAnLWu-DkqoKPMaBV-9A_GY6Kgho4qp6jGjiqP4595O4UcYj4b5cZk1wA_wUQ93AM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248674062</pqid></control><display><type>article</type><title>Online Maximum-Likelihood Estimation of the Parameters of Partially Observed Diffusion Processes</title><source>IEEE Electronic Library (IEL)</source><creator>Surace, Simone Carlo ; Pfister, Jean-Pascal</creator><creatorcontrib>Surace, Simone Carlo ; Pfister, Jean-Pascal</creatorcontrib><description>We revisit the problem of estimating the parameters of a partially observed diffusion process, consisting of a hidden state process and an observed process, with a continuous time parameter. The estimation is to be done online, i.e., the parameter estimate should be updated recursively based on the observation filtration. We provide a theoretical analysis of the stochastic gradient ascent algorithm on the incomplete-data log-likelihood. The convergence of the algorithm is proved under suitable conditions regarding the ergodicity of the process consisting of state filter, and tangent filter. Additionally, our parameter estimation is shown numerically to have the potential of improving suboptimal filters, and can be applied even when the system is not identifiable due to parameter redundancies. Online parameter estimation is a challenging problem that is ubiquitous in fields such as robotics, neuroscience, or finance in order to design adaptive filters and optimal controllers for unknown or changing systems. Despite this, theoretical analysis of convergence is currently lacking for most of these algorithms. This paper sheds new light on the theory of convergence in continuous time.</description><identifier>ISSN: 0018-9286</identifier><identifier>EISSN: 1558-2523</identifier><identifier>DOI: 10.1109/TAC.2018.2880404</identifier><identifier>CODEN: IETAA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive filters ; Adaptive systems ; Algorithms ; Ascent ; Convergence ; Diffusion processes ; filtering theory ; gradient methods ; Maximum likelihood estimation ; Parameter estimation ; Parameter identification ; Robotics ; Signal processing algorithms ; stochastic processes</subject><ispartof>IEEE transactions on automatic control, 2019-07, Vol.64 (7), p.2814-2829</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-53af31bd1df004b00a7c529089b336d3bef0edd45a8a01798fec43defebed3a83</citedby><cites>FETCH-LOGICAL-c446t-53af31bd1df004b00a7c529089b336d3bef0edd45a8a01798fec43defebed3a83</cites><orcidid>0000-0002-1847-3389 ; 0000-0001-9321-6481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8528340$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids></links><search><creatorcontrib>Surace, Simone Carlo</creatorcontrib><creatorcontrib>Pfister, Jean-Pascal</creatorcontrib><title>Online Maximum-Likelihood Estimation of the Parameters of Partially Observed Diffusion Processes</title><title>IEEE transactions on automatic control</title><addtitle>TAC</addtitle><description>We revisit the problem of estimating the parameters of a partially observed diffusion process, consisting of a hidden state process and an observed process, with a continuous time parameter. The estimation is to be done online, i.e., the parameter estimate should be updated recursively based on the observation filtration. We provide a theoretical analysis of the stochastic gradient ascent algorithm on the incomplete-data log-likelihood. The convergence of the algorithm is proved under suitable conditions regarding the ergodicity of the process consisting of state filter, and tangent filter. Additionally, our parameter estimation is shown numerically to have the potential of improving suboptimal filters, and can be applied even when the system is not identifiable due to parameter redundancies. Online parameter estimation is a challenging problem that is ubiquitous in fields such as robotics, neuroscience, or finance in order to design adaptive filters and optimal controllers for unknown or changing systems. Despite this, theoretical analysis of convergence is currently lacking for most of these algorithms. This paper sheds new light on the theory of convergence in continuous time.</description><subject>Adaptive filters</subject><subject>Adaptive systems</subject><subject>Algorithms</subject><subject>Ascent</subject><subject>Convergence</subject><subject>Diffusion processes</subject><subject>filtering theory</subject><subject>gradient methods</subject><subject>Maximum likelihood estimation</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Robotics</subject><subject>Signal processing algorithms</subject><subject>stochastic processes</subject><issn>0018-9286</issn><issn>1558-2523</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kM1PwzAMxSMEEmNwR-JSiXOH89EuPU5jfEhD22GcQ9o4WkbbjKRD7L-n1RAn69nv2fKPkFsKE0qheNjM5hMGVE6YlCBAnJERzTKZsozxczKCfpQWTOaX5CrGXS9zIeiIfKza2rWYvOkf1xyadOk-sXZb702yiJ1rdOd8m3ibdFtM1jroBjsMcej0qnO6ro_JqowYvtEkj87aQxwS6-ArjBHjNbmwuo5481fH5P1psZm_pMvV8-t8tkwrIfIuzbi2nJaGGgsgSgA9rTJWgCxKznPDS7SAxohMSw10WkiLleAGLZZouJZ8TO5Pe_fBfx0wdmrnD6HtTyrGhMynAnLWu-DkqoKPMaBV-9A_GY6Kgho4qp6jGjiqP4595O4UcYj4b5cZk1wA_wUQ93AM</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Surace, Simone Carlo</creator><creator>Pfister, Jean-Pascal</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1847-3389</orcidid><orcidid>https://orcid.org/0000-0001-9321-6481</orcidid></search><sort><creationdate>20190701</creationdate><title>Online Maximum-Likelihood Estimation of the Parameters of Partially Observed Diffusion Processes</title><author>Surace, Simone Carlo ; Pfister, Jean-Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-53af31bd1df004b00a7c529089b336d3bef0edd45a8a01798fec43defebed3a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive filters</topic><topic>Adaptive systems</topic><topic>Algorithms</topic><topic>Ascent</topic><topic>Convergence</topic><topic>Diffusion processes</topic><topic>filtering theory</topic><topic>gradient methods</topic><topic>Maximum likelihood estimation</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Robotics</topic><topic>Signal processing algorithms</topic><topic>stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Surace, Simone Carlo</creatorcontrib><creatorcontrib>Pfister, Jean-Pascal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automatic control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Surace, Simone Carlo</au><au>Pfister, Jean-Pascal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Maximum-Likelihood Estimation of the Parameters of Partially Observed Diffusion Processes</atitle><jtitle>IEEE transactions on automatic control</jtitle><stitle>TAC</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>64</volume><issue>7</issue><spage>2814</spage><epage>2829</epage><pages>2814-2829</pages><issn>0018-9286</issn><eissn>1558-2523</eissn><coden>IETAA9</coden><abstract>We revisit the problem of estimating the parameters of a partially observed diffusion process, consisting of a hidden state process and an observed process, with a continuous time parameter. The estimation is to be done online, i.e., the parameter estimate should be updated recursively based on the observation filtration. We provide a theoretical analysis of the stochastic gradient ascent algorithm on the incomplete-data log-likelihood. The convergence of the algorithm is proved under suitable conditions regarding the ergodicity of the process consisting of state filter, and tangent filter. Additionally, our parameter estimation is shown numerically to have the potential of improving suboptimal filters, and can be applied even when the system is not identifiable due to parameter redundancies. Online parameter estimation is a challenging problem that is ubiquitous in fields such as robotics, neuroscience, or finance in order to design adaptive filters and optimal controllers for unknown or changing systems. Despite this, theoretical analysis of convergence is currently lacking for most of these algorithms. This paper sheds new light on the theory of convergence in continuous time.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAC.2018.2880404</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-1847-3389</orcidid><orcidid>https://orcid.org/0000-0001-9321-6481</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9286
ispartof IEEE transactions on automatic control, 2019-07, Vol.64 (7), p.2814-2829
issn 0018-9286
1558-2523
language eng
recordid cdi_ieee_primary_8528340
source IEEE Electronic Library (IEL)
subjects Adaptive filters
Adaptive systems
Algorithms
Ascent
Convergence
Diffusion processes
filtering theory
gradient methods
Maximum likelihood estimation
Parameter estimation
Parameter identification
Robotics
Signal processing algorithms
stochastic processes
title Online Maximum-Likelihood Estimation of the Parameters of Partially Observed Diffusion Processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A55%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Maximum-Likelihood%20Estimation%20of%20the%20Parameters%20of%20Partially%20Observed%20Diffusion%20Processes&rft.jtitle=IEEE%20transactions%20on%20automatic%20control&rft.au=Surace,%20Simone%20Carlo&rft.date=2019-07-01&rft.volume=64&rft.issue=7&rft.spage=2814&rft.epage=2829&rft.pages=2814-2829&rft.issn=0018-9286&rft.eissn=1558-2523&rft.coden=IETAA9&rft_id=info:doi/10.1109/TAC.2018.2880404&rft_dat=%3Cproquest_ieee_%3E2248674062%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2248674062&rft_id=info:pmid/&rft_ieee_id=8528340&rfr_iscdi=true