Online Maximum-Likelihood Estimation of the Parameters of Partially Observed Diffusion Processes

We revisit the problem of estimating the parameters of a partially observed diffusion process, consisting of a hidden state process and an observed process, with a continuous time parameter. The estimation is to be done online, i.e., the parameter estimate should be updated recursively based on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 2019-07, Vol.64 (7), p.2814-2829
Hauptverfasser: Surace, Simone Carlo, Pfister, Jean-Pascal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We revisit the problem of estimating the parameters of a partially observed diffusion process, consisting of a hidden state process and an observed process, with a continuous time parameter. The estimation is to be done online, i.e., the parameter estimate should be updated recursively based on the observation filtration. We provide a theoretical analysis of the stochastic gradient ascent algorithm on the incomplete-data log-likelihood. The convergence of the algorithm is proved under suitable conditions regarding the ergodicity of the process consisting of state filter, and tangent filter. Additionally, our parameter estimation is shown numerically to have the potential of improving suboptimal filters, and can be applied even when the system is not identifiable due to parameter redundancies. Online parameter estimation is a challenging problem that is ubiquitous in fields such as robotics, neuroscience, or finance in order to design adaptive filters and optimal controllers for unknown or changing systems. Despite this, theoretical analysis of convergence is currently lacking for most of these algorithms. This paper sheds new light on the theory of convergence in continuous time.
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2018.2880404