A Kalman-Based Approach With EM Optimization for Respiratory Motion Modeling in Medical Imaging

Respiratory motion degrades quantitative and qualitative analysis of medical images. Estimation and, hence, correction of motion commonly uses static correspondence models between an external surrogate signal and internal motion. This paper presents a patient specific respiratory motion model with t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on radiation and plasma medical sciences 2019-07, Vol.3 (4), p.410-420
Hauptverfasser: Smith, Rhodri L., Rahni, Ashrani Aizzudin Abd, Jones, John, wells, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Respiratory motion degrades quantitative and qualitative analysis of medical images. Estimation and, hence, correction of motion commonly uses static correspondence models between an external surrogate signal and internal motion. This paper presents a patient specific respiratory motion model with the ability to adapt in the presence of irregular motion via a Kalman filter with expectation maximization for parameter estimation. The adaptive approach introduces generalizability allowing the model to account for a broader variety of motion. This may be required in the presence of irregular breathing and with different sensors monitoring the external surrogate signal. The motion model framework utilizing an adaptive Kalman filter approach is tested on dynamic magnetic resonance imaging data of nine volunteers and compared to a state-of-the-art static total least squares approach. Results demonstrate the framework is capable of reducing motion to the order of
ISSN:2469-7311
2469-7303
DOI:10.1109/TRPMS.2018.2879441