Calibration-Free B0 Correction of EPI Data Using Structured Low Rank Matrix Recovery
We introduce a structured low rank algorithm for the calibration-free compensation of field inhomogeneity artifacts in echo planar imaging (EPI) MRI data. We acquire the data using two EPI readouts that differ in echo-time. Using time segmentation, we reformulate the field inhomogeneity compensation...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2019-04, Vol.38 (4), p.979-990 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a structured low rank algorithm for the calibration-free compensation of field inhomogeneity artifacts in echo planar imaging (EPI) MRI data. We acquire the data using two EPI readouts that differ in echo-time. Using time segmentation, we reformulate the field inhomogeneity compensation problem as the recovery of an image time series from highly undersampled Fourier measurements. The temporal profile at each pixel is modeled as a single exponential, which is exploited to fill in the missing entries. We show that the exponential behavior at each pixel, along with the spatial smoothness of the exponential parameters, can be exploited to derive a 3-D annihilation relation in the Fourier domain. This relation translates to a low rank property on a structured multi-fold Toeplitz matrix, whose entries correspond to the measured k-space samples. We introduce a fast two-step algorithm for the completion of the Toeplitz matrix from the available samples. In the first step, we estimate the null space vectors of the Toeplitz matrix using only its fully sampled rows. The null space is then used to estimate the signal subspace, which facilitates the efficient recovery of the time series of images. We finally demonstrate the proposed approach on spherical MR phantom data and human data and show that the artifacts are significantly reduced. |
---|---|
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/TMI.2018.2876423 |