Fast 3-D Ultrasonic Imaging Using Time-Domain Synthetic Aperture Focusing Techniques Based on Circular Scan Conversions
Drawing-arc-based synthetic aperture focusing technique (DAB-SAFT) is capable of greatly improving the imaging speed by reinterpreting the focusing process in the forward direction, but it is only suitable for a two-dimensional (2-D) ultrasonic testing. By extending DAB-SAFT to fast 3-D ultrasonic i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computational imaging 2018-12, Vol.4 (4), p.632-639 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Drawing-arc-based synthetic aperture focusing technique (DAB-SAFT) is capable of greatly improving the imaging speed by reinterpreting the focusing process in the forward direction, but it is only suitable for a two-dimensional (2-D) ultrasonic testing. By extending DAB-SAFT to fast 3-D ultrasonic imaging, this paper proposes both spherical scan-conversion-based SAFT and a spherical-surface-conversion-based SAFT (SSCB-SAFT) for a 3-D nondestructive testing. In SSCB-SAFT, the entire imaging procedure is converted to multiple scan-conversion operations of spherical surfaces. To obtain the coordinates of pixels on a given spherical surface, the spherical scan-conversion algorithm is presented based on circular scan conversions to speed up the imaging procedure by avoiding the time-consuming computations of root-mean-square distances. Besides, the performance of DAB-SAFT is further improved based on the relative positions between different scanning positions, which largely reduce the number of circular arc scan-conversion operations. This acceleration strategy is also applicable to SSCB-SAFT. The simulation experiments show that the improved SSCB-SAFT speeds up the imaging procedure four times while maintaining the same results. |
---|---|
ISSN: | 2573-0436 2333-9403 |
DOI: | 10.1109/TCI.2018.2870303 |