Super Subwavelength Guiding and Rejecting of Terahertz Spoof SPPs Enabled by Planar Plasmonic Waveguides and Notch Filters Based on Spiral-Shaped Units

We numerically simulate novel planar plasmonic waveguides and notch filters with excellent guiding and rejection of terahertz (THz) waves with super subwavelength confinement. Our design is based on spoof surface plasmon polaritons-surface plasmon polaritons with a frequency that has been tuned usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2018-10, Vol.36 (20), p.4988-4994
Hauptverfasser: Ye, Longfang, Zhang, Wei, Ofori-Okai, Benjamin K., Li, Weiwen, Zhuo, Jianliang, Cai, Guoxiong, Liu, Qing Huo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4994
container_issue 20
container_start_page 4988
container_title Journal of lightwave technology
container_volume 36
creator Ye, Longfang
Zhang, Wei
Ofori-Okai, Benjamin K.
Li, Weiwen
Zhuo, Jianliang
Cai, Guoxiong
Liu, Qing Huo
description We numerically simulate novel planar plasmonic waveguides and notch filters with excellent guiding and rejection of terahertz (THz) waves with super subwavelength confinement. Our design is based on spoof surface plasmon polaritons-surface plasmon polaritons with a frequency that has been tuned using patterned conductive surfaces. We find that by using patterns of periodically arranged spiral-shaped units, the dispersion characteristics can be engineered at will by tuning the parameters of the spirals. We find that the resulting plasmonic waveguides have much lower asymptotic frequencies and much tighter terahertz field confinement when compared with conventional rectangular-grooved plasmonic waveguides. We show it is possible to design a structure with lateral dimensions that are only 25% the size of the conventional spoof surface plasmon polariton waveguides but with the same asymptotic frequency. Finally, we combined this architecture with broadband couplers to design an ultrawideband low-pass filter with sharp roll-off (cut-off frequency at 1.29 THz) and low insertion loss (
doi_str_mv 10.1109/JLT.2018.2868129
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8452956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8452956</ieee_id><sourcerecordid>2117167295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-9da34164936ee0a3154425b92e8f3a19690f75061c25f20570547d0b81e6d15c3</originalsourceid><addsrcrecordid>eNo9kcFu1DAQhiMEEkvhjsTFgnMWj2M7yRGqtoBWsCJbcbQcZ7LrVWoH26EqL8Lr4mUrTqOxvv-TR39RvAa6BqDt-y-b3ZpRaNaskQ2w9kmxAiGakjGonhYrWldV2dSMPy9exHikFDhv6lXxp1tmDKRb-nv9Cyd0-3QgN4sdrNsT7QbyHY9o0mnzI9lh0AcM6TfpZp_3bruN5MrpfsKB9A9kO2mnw2nEO--sIT-ydJ9tGP_JvvpkDuTaTglDJB91zDHvsswGPZXdQc_54dbZFF8Wz0Y9RXz1OC-K2-ur3eWncvPt5vPlh01pOJOpbAddcZC8rSQi1RUIzpnoW4bNWGloZUvHWlAJhomRUVFTweuB9g2gHECY6qJ4e_b6mKyKxiY0B-Ody0cr4C3lkmbo3Rmag_-5YEzq6Jfg8r8UA6hB1qwVmaJnygQfY8BRzcHe6fCggKpTRyp3pE4dqceOcuTNOWIR8T_ecJF9svoLkUCMlA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117167295</pqid></control><display><type>article</type><title>Super Subwavelength Guiding and Rejecting of Terahertz Spoof SPPs Enabled by Planar Plasmonic Waveguides and Notch Filters Based on Spiral-Shaped Units</title><source>IEEE Electronic Library (IEL)</source><creator>Ye, Longfang ; Zhang, Wei ; Ofori-Okai, Benjamin K. ; Li, Weiwen ; Zhuo, Jianliang ; Cai, Guoxiong ; Liu, Qing Huo</creator><creatorcontrib>Ye, Longfang ; Zhang, Wei ; Ofori-Okai, Benjamin K. ; Li, Weiwen ; Zhuo, Jianliang ; Cai, Guoxiong ; Liu, Qing Huo ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>We numerically simulate novel planar plasmonic waveguides and notch filters with excellent guiding and rejection of terahertz (THz) waves with super subwavelength confinement. Our design is based on spoof surface plasmon polaritons-surface plasmon polaritons with a frequency that has been tuned using patterned conductive surfaces. We find that by using patterns of periodically arranged spiral-shaped units, the dispersion characteristics can be engineered at will by tuning the parameters of the spirals. We find that the resulting plasmonic waveguides have much lower asymptotic frequencies and much tighter terahertz field confinement when compared with conventional rectangular-grooved plasmonic waveguides. We show it is possible to design a structure with lateral dimensions that are only 25% the size of the conventional spoof surface plasmon polariton waveguides but with the same asymptotic frequency. Finally, we combined this architecture with broadband couplers to design an ultrawideband low-pass filter with sharp roll-off (cut-off frequency at 1.29 THz) and low insertion loss (&lt;;3 dB). Furthermore, by introducing double ring resonators based on spiral-shaped units, a planar plasmonic notch filter with rejection of more than 17 dB between 0.97 and 0.99 THz is demonstrated. The proposed waveguides and notch filters may have great potential applications in the promising terahertz integrated plasmonic circuits and systems.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2018.2868129</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotic properties ; Broadband ; Computer simulation ; Confinement ; Dispersion ; Electromagnetic wave filters ; ENGINEERING ; Insertion loss ; Integrated optics devices ; Low pass filters ; Notch filters ; Optical waveguides ; OTHER INSTRUMENTATION ; Planar waveguides ; Plasmons ; Polaritons ; Rejection ; Spirals ; spoof surface plasmon polaritons ; terahertz (THz) ; Ultrawideband ; Waveguides ; Wideband communications</subject><ispartof>Journal of lightwave technology, 2018-10, Vol.36 (20), p.4988-4994</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-9da34164936ee0a3154425b92e8f3a19690f75061c25f20570547d0b81e6d15c3</citedby><cites>FETCH-LOGICAL-c426t-9da34164936ee0a3154425b92e8f3a19690f75061c25f20570547d0b81e6d15c3</cites><orcidid>0000-0003-3545-6430 ; 0000-0003-0867-6032 ; 0000-0001-5286-4423 ; 0000000335456430 ; 0000000152864423 ; 0000000308676032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8452956$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,315,782,786,798,887,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8452956$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1490460$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Longfang</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Ofori-Okai, Benjamin K.</creatorcontrib><creatorcontrib>Li, Weiwen</creatorcontrib><creatorcontrib>Zhuo, Jianliang</creatorcontrib><creatorcontrib>Cai, Guoxiong</creatorcontrib><creatorcontrib>Liu, Qing Huo</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Super Subwavelength Guiding and Rejecting of Terahertz Spoof SPPs Enabled by Planar Plasmonic Waveguides and Notch Filters Based on Spiral-Shaped Units</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>We numerically simulate novel planar plasmonic waveguides and notch filters with excellent guiding and rejection of terahertz (THz) waves with super subwavelength confinement. Our design is based on spoof surface plasmon polaritons-surface plasmon polaritons with a frequency that has been tuned using patterned conductive surfaces. We find that by using patterns of periodically arranged spiral-shaped units, the dispersion characteristics can be engineered at will by tuning the parameters of the spirals. We find that the resulting plasmonic waveguides have much lower asymptotic frequencies and much tighter terahertz field confinement when compared with conventional rectangular-grooved plasmonic waveguides. We show it is possible to design a structure with lateral dimensions that are only 25% the size of the conventional spoof surface plasmon polariton waveguides but with the same asymptotic frequency. Finally, we combined this architecture with broadband couplers to design an ultrawideband low-pass filter with sharp roll-off (cut-off frequency at 1.29 THz) and low insertion loss (&lt;;3 dB). Furthermore, by introducing double ring resonators based on spiral-shaped units, a planar plasmonic notch filter with rejection of more than 17 dB between 0.97 and 0.99 THz is demonstrated. The proposed waveguides and notch filters may have great potential applications in the promising terahertz integrated plasmonic circuits and systems.</description><subject>Asymptotic properties</subject><subject>Broadband</subject><subject>Computer simulation</subject><subject>Confinement</subject><subject>Dispersion</subject><subject>Electromagnetic wave filters</subject><subject>ENGINEERING</subject><subject>Insertion loss</subject><subject>Integrated optics devices</subject><subject>Low pass filters</subject><subject>Notch filters</subject><subject>Optical waveguides</subject><subject>OTHER INSTRUMENTATION</subject><subject>Planar waveguides</subject><subject>Plasmons</subject><subject>Polaritons</subject><subject>Rejection</subject><subject>Spirals</subject><subject>spoof surface plasmon polaritons</subject><subject>terahertz (THz)</subject><subject>Ultrawideband</subject><subject>Waveguides</subject><subject>Wideband communications</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kcFu1DAQhiMEEkvhjsTFgnMWj2M7yRGqtoBWsCJbcbQcZ7LrVWoH26EqL8Lr4mUrTqOxvv-TR39RvAa6BqDt-y-b3ZpRaNaskQ2w9kmxAiGakjGonhYrWldV2dSMPy9exHikFDhv6lXxp1tmDKRb-nv9Cyd0-3QgN4sdrNsT7QbyHY9o0mnzI9lh0AcM6TfpZp_3bruN5MrpfsKB9A9kO2mnw2nEO--sIT-ydJ9tGP_JvvpkDuTaTglDJB91zDHvsswGPZXdQc_54dbZFF8Wz0Y9RXz1OC-K2-ur3eWncvPt5vPlh01pOJOpbAddcZC8rSQi1RUIzpnoW4bNWGloZUvHWlAJhomRUVFTweuB9g2gHECY6qJ4e_b6mKyKxiY0B-Ody0cr4C3lkmbo3Rmag_-5YEzq6Jfg8r8UA6hB1qwVmaJnygQfY8BRzcHe6fCggKpTRyp3pE4dqceOcuTNOWIR8T_ecJF9svoLkUCMlA</recordid><startdate>20181015</startdate><enddate>20181015</enddate><creator>Ye, Longfang</creator><creator>Zhang, Wei</creator><creator>Ofori-Okai, Benjamin K.</creator><creator>Li, Weiwen</creator><creator>Zhuo, Jianliang</creator><creator>Cai, Guoxiong</creator><creator>Liu, Qing Huo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3545-6430</orcidid><orcidid>https://orcid.org/0000-0003-0867-6032</orcidid><orcidid>https://orcid.org/0000-0001-5286-4423</orcidid><orcidid>https://orcid.org/0000000335456430</orcidid><orcidid>https://orcid.org/0000000152864423</orcidid><orcidid>https://orcid.org/0000000308676032</orcidid></search><sort><creationdate>20181015</creationdate><title>Super Subwavelength Guiding and Rejecting of Terahertz Spoof SPPs Enabled by Planar Plasmonic Waveguides and Notch Filters Based on Spiral-Shaped Units</title><author>Ye, Longfang ; Zhang, Wei ; Ofori-Okai, Benjamin K. ; Li, Weiwen ; Zhuo, Jianliang ; Cai, Guoxiong ; Liu, Qing Huo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-9da34164936ee0a3154425b92e8f3a19690f75061c25f20570547d0b81e6d15c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic properties</topic><topic>Broadband</topic><topic>Computer simulation</topic><topic>Confinement</topic><topic>Dispersion</topic><topic>Electromagnetic wave filters</topic><topic>ENGINEERING</topic><topic>Insertion loss</topic><topic>Integrated optics devices</topic><topic>Low pass filters</topic><topic>Notch filters</topic><topic>Optical waveguides</topic><topic>OTHER INSTRUMENTATION</topic><topic>Planar waveguides</topic><topic>Plasmons</topic><topic>Polaritons</topic><topic>Rejection</topic><topic>Spirals</topic><topic>spoof surface plasmon polaritons</topic><topic>terahertz (THz)</topic><topic>Ultrawideband</topic><topic>Waveguides</topic><topic>Wideband communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Longfang</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Ofori-Okai, Benjamin K.</creatorcontrib><creatorcontrib>Li, Weiwen</creatorcontrib><creatorcontrib>Zhuo, Jianliang</creatorcontrib><creatorcontrib>Cai, Guoxiong</creatorcontrib><creatorcontrib>Liu, Qing Huo</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Longfang</au><au>Zhang, Wei</au><au>Ofori-Okai, Benjamin K.</au><au>Li, Weiwen</au><au>Zhuo, Jianliang</au><au>Cai, Guoxiong</au><au>Liu, Qing Huo</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super Subwavelength Guiding and Rejecting of Terahertz Spoof SPPs Enabled by Planar Plasmonic Waveguides and Notch Filters Based on Spiral-Shaped Units</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2018-10-15</date><risdate>2018</risdate><volume>36</volume><issue>20</issue><spage>4988</spage><epage>4994</epage><pages>4988-4994</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>We numerically simulate novel planar plasmonic waveguides and notch filters with excellent guiding and rejection of terahertz (THz) waves with super subwavelength confinement. Our design is based on spoof surface plasmon polaritons-surface plasmon polaritons with a frequency that has been tuned using patterned conductive surfaces. We find that by using patterns of periodically arranged spiral-shaped units, the dispersion characteristics can be engineered at will by tuning the parameters of the spirals. We find that the resulting plasmonic waveguides have much lower asymptotic frequencies and much tighter terahertz field confinement when compared with conventional rectangular-grooved plasmonic waveguides. We show it is possible to design a structure with lateral dimensions that are only 25% the size of the conventional spoof surface plasmon polariton waveguides but with the same asymptotic frequency. Finally, we combined this architecture with broadband couplers to design an ultrawideband low-pass filter with sharp roll-off (cut-off frequency at 1.29 THz) and low insertion loss (&lt;;3 dB). Furthermore, by introducing double ring resonators based on spiral-shaped units, a planar plasmonic notch filter with rejection of more than 17 dB between 0.97 and 0.99 THz is demonstrated. The proposed waveguides and notch filters may have great potential applications in the promising terahertz integrated plasmonic circuits and systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2018.2868129</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3545-6430</orcidid><orcidid>https://orcid.org/0000-0003-0867-6032</orcidid><orcidid>https://orcid.org/0000-0001-5286-4423</orcidid><orcidid>https://orcid.org/0000000335456430</orcidid><orcidid>https://orcid.org/0000000152864423</orcidid><orcidid>https://orcid.org/0000000308676032</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2018-10, Vol.36 (20), p.4988-4994
issn 0733-8724
1558-2213
language eng
recordid cdi_ieee_primary_8452956
source IEEE Electronic Library (IEL)
subjects Asymptotic properties
Broadband
Computer simulation
Confinement
Dispersion
Electromagnetic wave filters
ENGINEERING
Insertion loss
Integrated optics devices
Low pass filters
Notch filters
Optical waveguides
OTHER INSTRUMENTATION
Planar waveguides
Plasmons
Polaritons
Rejection
Spirals
spoof surface plasmon polaritons
terahertz (THz)
Ultrawideband
Waveguides
Wideband communications
title Super Subwavelength Guiding and Rejecting of Terahertz Spoof SPPs Enabled by Planar Plasmonic Waveguides and Notch Filters Based on Spiral-Shaped Units
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T02%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super%20Subwavelength%20Guiding%20and%20Rejecting%20of%20Terahertz%20Spoof%20SPPs%20Enabled%20by%20Planar%20Plasmonic%20Waveguides%20and%20Notch%20Filters%20Based%20on%20Spiral-Shaped%20Units&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Ye,%20Longfang&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2018-10-15&rft.volume=36&rft.issue=20&rft.spage=4988&rft.epage=4994&rft.pages=4988-4994&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2018.2868129&rft_dat=%3Cproquest_RIE%3E2117167295%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117167295&rft_id=info:pmid/&rft_ieee_id=8452956&rfr_iscdi=true