Super Subwavelength Guiding and Rejecting of Terahertz Spoof SPPs Enabled by Planar Plasmonic Waveguides and Notch Filters Based on Spiral-Shaped Units
We numerically simulate novel planar plasmonic waveguides and notch filters with excellent guiding and rejection of terahertz (THz) waves with super subwavelength confinement. Our design is based on spoof surface plasmon polaritons-surface plasmon polaritons with a frequency that has been tuned usin...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2018-10, Vol.36 (20), p.4988-4994 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4994 |
---|---|
container_issue | 20 |
container_start_page | 4988 |
container_title | Journal of lightwave technology |
container_volume | 36 |
creator | Ye, Longfang Zhang, Wei Ofori-Okai, Benjamin K. Li, Weiwen Zhuo, Jianliang Cai, Guoxiong Liu, Qing Huo |
description | We numerically simulate novel planar plasmonic waveguides and notch filters with excellent guiding and rejection of terahertz (THz) waves with super subwavelength confinement. Our design is based on spoof surface plasmon polaritons-surface plasmon polaritons with a frequency that has been tuned using patterned conductive surfaces. We find that by using patterns of periodically arranged spiral-shaped units, the dispersion characteristics can be engineered at will by tuning the parameters of the spirals. We find that the resulting plasmonic waveguides have much lower asymptotic frequencies and much tighter terahertz field confinement when compared with conventional rectangular-grooved plasmonic waveguides. We show it is possible to design a structure with lateral dimensions that are only 25% the size of the conventional spoof surface plasmon polariton waveguides but with the same asymptotic frequency. Finally, we combined this architecture with broadband couplers to design an ultrawideband low-pass filter with sharp roll-off (cut-off frequency at 1.29 THz) and low insertion loss ( |
doi_str_mv | 10.1109/JLT.2018.2868129 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8452956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8452956</ieee_id><sourcerecordid>2117167295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-9da34164936ee0a3154425b92e8f3a19690f75061c25f20570547d0b81e6d15c3</originalsourceid><addsrcrecordid>eNo9kcFu1DAQhiMEEkvhjsTFgnMWj2M7yRGqtoBWsCJbcbQcZ7LrVWoH26EqL8Lr4mUrTqOxvv-TR39RvAa6BqDt-y-b3ZpRaNaskQ2w9kmxAiGakjGonhYrWldV2dSMPy9exHikFDhv6lXxp1tmDKRb-nv9Cyd0-3QgN4sdrNsT7QbyHY9o0mnzI9lh0AcM6TfpZp_3bruN5MrpfsKB9A9kO2mnw2nEO--sIT-ydJ9tGP_JvvpkDuTaTglDJB91zDHvsswGPZXdQc_54dbZFF8Wz0Y9RXz1OC-K2-ur3eWncvPt5vPlh01pOJOpbAddcZC8rSQi1RUIzpnoW4bNWGloZUvHWlAJhomRUVFTweuB9g2gHECY6qJ4e_b6mKyKxiY0B-Ody0cr4C3lkmbo3Rmag_-5YEzq6Jfg8r8UA6hB1qwVmaJnygQfY8BRzcHe6fCggKpTRyp3pE4dqceOcuTNOWIR8T_ecJF9svoLkUCMlA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117167295</pqid></control><display><type>article</type><title>Super Subwavelength Guiding and Rejecting of Terahertz Spoof SPPs Enabled by Planar Plasmonic Waveguides and Notch Filters Based on Spiral-Shaped Units</title><source>IEEE Electronic Library (IEL)</source><creator>Ye, Longfang ; Zhang, Wei ; Ofori-Okai, Benjamin K. ; Li, Weiwen ; Zhuo, Jianliang ; Cai, Guoxiong ; Liu, Qing Huo</creator><creatorcontrib>Ye, Longfang ; Zhang, Wei ; Ofori-Okai, Benjamin K. ; Li, Weiwen ; Zhuo, Jianliang ; Cai, Guoxiong ; Liu, Qing Huo ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>We numerically simulate novel planar plasmonic waveguides and notch filters with excellent guiding and rejection of terahertz (THz) waves with super subwavelength confinement. Our design is based on spoof surface plasmon polaritons-surface plasmon polaritons with a frequency that has been tuned using patterned conductive surfaces. We find that by using patterns of periodically arranged spiral-shaped units, the dispersion characteristics can be engineered at will by tuning the parameters of the spirals. We find that the resulting plasmonic waveguides have much lower asymptotic frequencies and much tighter terahertz field confinement when compared with conventional rectangular-grooved plasmonic waveguides. We show it is possible to design a structure with lateral dimensions that are only 25% the size of the conventional spoof surface plasmon polariton waveguides but with the same asymptotic frequency. Finally, we combined this architecture with broadband couplers to design an ultrawideband low-pass filter with sharp roll-off (cut-off frequency at 1.29 THz) and low insertion loss (<;3 dB). Furthermore, by introducing double ring resonators based on spiral-shaped units, a planar plasmonic notch filter with rejection of more than 17 dB between 0.97 and 0.99 THz is demonstrated. The proposed waveguides and notch filters may have great potential applications in the promising terahertz integrated plasmonic circuits and systems.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2018.2868129</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymptotic properties ; Broadband ; Computer simulation ; Confinement ; Dispersion ; Electromagnetic wave filters ; ENGINEERING ; Insertion loss ; Integrated optics devices ; Low pass filters ; Notch filters ; Optical waveguides ; OTHER INSTRUMENTATION ; Planar waveguides ; Plasmons ; Polaritons ; Rejection ; Spirals ; spoof surface plasmon polaritons ; terahertz (THz) ; Ultrawideband ; Waveguides ; Wideband communications</subject><ispartof>Journal of lightwave technology, 2018-10, Vol.36 (20), p.4988-4994</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-9da34164936ee0a3154425b92e8f3a19690f75061c25f20570547d0b81e6d15c3</citedby><cites>FETCH-LOGICAL-c426t-9da34164936ee0a3154425b92e8f3a19690f75061c25f20570547d0b81e6d15c3</cites><orcidid>0000-0003-3545-6430 ; 0000-0003-0867-6032 ; 0000-0001-5286-4423 ; 0000000335456430 ; 0000000152864423 ; 0000000308676032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8452956$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,315,782,786,798,887,27931,27932,54765</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8452956$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1490460$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Longfang</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Ofori-Okai, Benjamin K.</creatorcontrib><creatorcontrib>Li, Weiwen</creatorcontrib><creatorcontrib>Zhuo, Jianliang</creatorcontrib><creatorcontrib>Cai, Guoxiong</creatorcontrib><creatorcontrib>Liu, Qing Huo</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Super Subwavelength Guiding and Rejecting of Terahertz Spoof SPPs Enabled by Planar Plasmonic Waveguides and Notch Filters Based on Spiral-Shaped Units</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>We numerically simulate novel planar plasmonic waveguides and notch filters with excellent guiding and rejection of terahertz (THz) waves with super subwavelength confinement. Our design is based on spoof surface plasmon polaritons-surface plasmon polaritons with a frequency that has been tuned using patterned conductive surfaces. We find that by using patterns of periodically arranged spiral-shaped units, the dispersion characteristics can be engineered at will by tuning the parameters of the spirals. We find that the resulting plasmonic waveguides have much lower asymptotic frequencies and much tighter terahertz field confinement when compared with conventional rectangular-grooved plasmonic waveguides. We show it is possible to design a structure with lateral dimensions that are only 25% the size of the conventional spoof surface plasmon polariton waveguides but with the same asymptotic frequency. Finally, we combined this architecture with broadband couplers to design an ultrawideband low-pass filter with sharp roll-off (cut-off frequency at 1.29 THz) and low insertion loss (<;3 dB). Furthermore, by introducing double ring resonators based on spiral-shaped units, a planar plasmonic notch filter with rejection of more than 17 dB between 0.97 and 0.99 THz is demonstrated. The proposed waveguides and notch filters may have great potential applications in the promising terahertz integrated plasmonic circuits and systems.</description><subject>Asymptotic properties</subject><subject>Broadband</subject><subject>Computer simulation</subject><subject>Confinement</subject><subject>Dispersion</subject><subject>Electromagnetic wave filters</subject><subject>ENGINEERING</subject><subject>Insertion loss</subject><subject>Integrated optics devices</subject><subject>Low pass filters</subject><subject>Notch filters</subject><subject>Optical waveguides</subject><subject>OTHER INSTRUMENTATION</subject><subject>Planar waveguides</subject><subject>Plasmons</subject><subject>Polaritons</subject><subject>Rejection</subject><subject>Spirals</subject><subject>spoof surface plasmon polaritons</subject><subject>terahertz (THz)</subject><subject>Ultrawideband</subject><subject>Waveguides</subject><subject>Wideband communications</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kcFu1DAQhiMEEkvhjsTFgnMWj2M7yRGqtoBWsCJbcbQcZ7LrVWoH26EqL8Lr4mUrTqOxvv-TR39RvAa6BqDt-y-b3ZpRaNaskQ2w9kmxAiGakjGonhYrWldV2dSMPy9exHikFDhv6lXxp1tmDKRb-nv9Cyd0-3QgN4sdrNsT7QbyHY9o0mnzI9lh0AcM6TfpZp_3bruN5MrpfsKB9A9kO2mnw2nEO--sIT-ydJ9tGP_JvvpkDuTaTglDJB91zDHvsswGPZXdQc_54dbZFF8Wz0Y9RXz1OC-K2-ur3eWncvPt5vPlh01pOJOpbAddcZC8rSQi1RUIzpnoW4bNWGloZUvHWlAJhomRUVFTweuB9g2gHECY6qJ4e_b6mKyKxiY0B-Ody0cr4C3lkmbo3Rmag_-5YEzq6Jfg8r8UA6hB1qwVmaJnygQfY8BRzcHe6fCggKpTRyp3pE4dqceOcuTNOWIR8T_ecJF9svoLkUCMlA</recordid><startdate>20181015</startdate><enddate>20181015</enddate><creator>Ye, Longfang</creator><creator>Zhang, Wei</creator><creator>Ofori-Okai, Benjamin K.</creator><creator>Li, Weiwen</creator><creator>Zhuo, Jianliang</creator><creator>Cai, Guoxiong</creator><creator>Liu, Qing Huo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3545-6430</orcidid><orcidid>https://orcid.org/0000-0003-0867-6032</orcidid><orcidid>https://orcid.org/0000-0001-5286-4423</orcidid><orcidid>https://orcid.org/0000000335456430</orcidid><orcidid>https://orcid.org/0000000152864423</orcidid><orcidid>https://orcid.org/0000000308676032</orcidid></search><sort><creationdate>20181015</creationdate><title>Super Subwavelength Guiding and Rejecting of Terahertz Spoof SPPs Enabled by Planar Plasmonic Waveguides and Notch Filters Based on Spiral-Shaped Units</title><author>Ye, Longfang ; Zhang, Wei ; Ofori-Okai, Benjamin K. ; Li, Weiwen ; Zhuo, Jianliang ; Cai, Guoxiong ; Liu, Qing Huo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-9da34164936ee0a3154425b92e8f3a19690f75061c25f20570547d0b81e6d15c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic properties</topic><topic>Broadband</topic><topic>Computer simulation</topic><topic>Confinement</topic><topic>Dispersion</topic><topic>Electromagnetic wave filters</topic><topic>ENGINEERING</topic><topic>Insertion loss</topic><topic>Integrated optics devices</topic><topic>Low pass filters</topic><topic>Notch filters</topic><topic>Optical waveguides</topic><topic>OTHER INSTRUMENTATION</topic><topic>Planar waveguides</topic><topic>Plasmons</topic><topic>Polaritons</topic><topic>Rejection</topic><topic>Spirals</topic><topic>spoof surface plasmon polaritons</topic><topic>terahertz (THz)</topic><topic>Ultrawideband</topic><topic>Waveguides</topic><topic>Wideband communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Longfang</creatorcontrib><creatorcontrib>Zhang, Wei</creatorcontrib><creatorcontrib>Ofori-Okai, Benjamin K.</creatorcontrib><creatorcontrib>Li, Weiwen</creatorcontrib><creatorcontrib>Zhuo, Jianliang</creatorcontrib><creatorcontrib>Cai, Guoxiong</creatorcontrib><creatorcontrib>Liu, Qing Huo</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ye, Longfang</au><au>Zhang, Wei</au><au>Ofori-Okai, Benjamin K.</au><au>Li, Weiwen</au><au>Zhuo, Jianliang</au><au>Cai, Guoxiong</au><au>Liu, Qing Huo</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Super Subwavelength Guiding and Rejecting of Terahertz Spoof SPPs Enabled by Planar Plasmonic Waveguides and Notch Filters Based on Spiral-Shaped Units</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2018-10-15</date><risdate>2018</risdate><volume>36</volume><issue>20</issue><spage>4988</spage><epage>4994</epage><pages>4988-4994</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>We numerically simulate novel planar plasmonic waveguides and notch filters with excellent guiding and rejection of terahertz (THz) waves with super subwavelength confinement. Our design is based on spoof surface plasmon polaritons-surface plasmon polaritons with a frequency that has been tuned using patterned conductive surfaces. We find that by using patterns of periodically arranged spiral-shaped units, the dispersion characteristics can be engineered at will by tuning the parameters of the spirals. We find that the resulting plasmonic waveguides have much lower asymptotic frequencies and much tighter terahertz field confinement when compared with conventional rectangular-grooved plasmonic waveguides. We show it is possible to design a structure with lateral dimensions that are only 25% the size of the conventional spoof surface plasmon polariton waveguides but with the same asymptotic frequency. Finally, we combined this architecture with broadband couplers to design an ultrawideband low-pass filter with sharp roll-off (cut-off frequency at 1.29 THz) and low insertion loss (<;3 dB). Furthermore, by introducing double ring resonators based on spiral-shaped units, a planar plasmonic notch filter with rejection of more than 17 dB between 0.97 and 0.99 THz is demonstrated. The proposed waveguides and notch filters may have great potential applications in the promising terahertz integrated plasmonic circuits and systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2018.2868129</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3545-6430</orcidid><orcidid>https://orcid.org/0000-0003-0867-6032</orcidid><orcidid>https://orcid.org/0000-0001-5286-4423</orcidid><orcidid>https://orcid.org/0000000335456430</orcidid><orcidid>https://orcid.org/0000000152864423</orcidid><orcidid>https://orcid.org/0000000308676032</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2018-10, Vol.36 (20), p.4988-4994 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_ieee_primary_8452956 |
source | IEEE Electronic Library (IEL) |
subjects | Asymptotic properties Broadband Computer simulation Confinement Dispersion Electromagnetic wave filters ENGINEERING Insertion loss Integrated optics devices Low pass filters Notch filters Optical waveguides OTHER INSTRUMENTATION Planar waveguides Plasmons Polaritons Rejection Spirals spoof surface plasmon polaritons terahertz (THz) Ultrawideband Waveguides Wideband communications |
title | Super Subwavelength Guiding and Rejecting of Terahertz Spoof SPPs Enabled by Planar Plasmonic Waveguides and Notch Filters Based on Spiral-Shaped Units |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T02%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Super%20Subwavelength%20Guiding%20and%20Rejecting%20of%20Terahertz%20Spoof%20SPPs%20Enabled%20by%20Planar%20Plasmonic%20Waveguides%20and%20Notch%20Filters%20Based%20on%20Spiral-Shaped%20Units&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Ye,%20Longfang&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2018-10-15&rft.volume=36&rft.issue=20&rft.spage=4988&rft.epage=4994&rft.pages=4988-4994&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2018.2868129&rft_dat=%3Cproquest_RIE%3E2117167295%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117167295&rft_id=info:pmid/&rft_ieee_id=8452956&rfr_iscdi=true |