Super Subwavelength Guiding and Rejecting of Terahertz Spoof SPPs Enabled by Planar Plasmonic Waveguides and Notch Filters Based on Spiral-Shaped Units
We numerically simulate novel planar plasmonic waveguides and notch filters with excellent guiding and rejection of terahertz (THz) waves with super subwavelength confinement. Our design is based on spoof surface plasmon polaritons-surface plasmon polaritons with a frequency that has been tuned usin...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2018-10, Vol.36 (20), p.4988-4994 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We numerically simulate novel planar plasmonic waveguides and notch filters with excellent guiding and rejection of terahertz (THz) waves with super subwavelength confinement. Our design is based on spoof surface plasmon polaritons-surface plasmon polaritons with a frequency that has been tuned using patterned conductive surfaces. We find that by using patterns of periodically arranged spiral-shaped units, the dispersion characteristics can be engineered at will by tuning the parameters of the spirals. We find that the resulting plasmonic waveguides have much lower asymptotic frequencies and much tighter terahertz field confinement when compared with conventional rectangular-grooved plasmonic waveguides. We show it is possible to design a structure with lateral dimensions that are only 25% the size of the conventional spoof surface plasmon polariton waveguides but with the same asymptotic frequency. Finally, we combined this architecture with broadband couplers to design an ultrawideband low-pass filter with sharp roll-off (cut-off frequency at 1.29 THz) and low insertion loss ( |
---|---|
ISSN: | 0733-8724 1558-2213 |
DOI: | 10.1109/JLT.2018.2868129 |