A Real-Time Controlled Islanding and Restoration Scheme Based on Estimated States

Power system operators are facing major challenges today to keep the system operating at the admissible limits. Recent blackouts demonstrated the need for a systematic study and design of a comprehensive system control strategy. Intentional controlled islanding (ICI) has been proposed as an effectiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2019-01, Vol.34 (1), p.606-615
Hauptverfasser: Demetriou, Panayiotis, Asprou, Markos, Kyriakides, Elias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Power system operators are facing major challenges today to keep the system operating at the admissible limits. Recent blackouts demonstrated the need for a systematic study and design of a comprehensive system control strategy. Intentional controlled islanding (ICI) has been proposed as an effective corrective control action of final resort to save the system from a partial or a complete blackout. ICI limits the occurrence and consequences of blackouts by splitting the power system into a group of smaller, stable, and sustainable subsystems, also called islands. After a controlled system separation, power system operators should resynchronize and reconnect each island to restore the system. In this sense, real-time knowledge of the operating condition of the islands is required. In this paper, a real-time ICI and restoration scheme is proposed. The proposed scheme consists of an ICI algorithm that finds islanding solutions with minimal power-flow disruption while considering power system restoration constraints (e.g., blackstart availability, sufficient generation capacity, and observability), a real-time state estimator that monitors the system before and after the islanding, and a restoration process. The proposed ICI and restoration scheme is tested using the dynamic IEEE 39- and 118-bus test systems.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2018.2866900