Real-Time Deep Pose Estimation With Geodesic Loss for Image-to-Template Rigid Registration
With an aim to increase the capture range and accelerate the performance of state-of-the-art inter-subject and subject-to-template 3-D rigid registration, we propose deep learning-based methods that are trained to find the 3-D position of arbitrarily-oriented subjects or anatomy in a canonical space...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2019-02, Vol.38 (2), p.470-481 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With an aim to increase the capture range and accelerate the performance of state-of-the-art inter-subject and subject-to-template 3-D rigid registration, we propose deep learning-based methods that are trained to find the 3-D position of arbitrarily-oriented subjects or anatomy in a canonical space based on slices or volumes of medical images. For this, we propose regression convolutional neural networks (CNNs) that learn to predict the angle-axis representation of 3-D rotations and translations using image features. We use and compare mean square error and geodesic loss to train regression CNNs for 3-D pose estimation used in two different scenarios: slice-to-volume registration and volume-to-volume registration. As an exemplary application, we applied the proposed methods to register arbitrarily oriented reconstructed images of fetuses scanned in-utero at a wide gestational age range to a standard atlas space. Our results show that in such registration applications that are amendable to learning, the proposed deep learning methods with geodesic loss minimization achieved 3-D pose estimation with a wide capture range in real-time ( |
---|---|
ISSN: | 0278-0062 1558-254X |
DOI: | 10.1109/TMI.2018.2866442 |