Cryogenic Characterization of 28-nm FD-SOI Ring Oscillators With Energy Efficiency Optimization

Extensive electrical characterization of ring oscillators (ROs) made in high- {k} metal gate 28-nm fully depleted silicon-on-insulator technology is presented for a set of temperatures between 296 and 4.3 K. First, delay per stage ( \tau _{P} ), static current ( {I} _{\textsf {STAT}} ), and dynamic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on electron devices 2018-09, Vol.65 (9), p.3682-3688
Hauptverfasser: Bohuslavskyi, H., Barraud, S., Barral, V., Casse, M., Le Guevel, L., Hutin, L., Bertrand, B., Crippa, A., Jehl, X., Pillonnet, G., Jansen, A. G. M., Arnaud, F., Galy, P., Maurand, R., De Franceschi, S., Sanquer, M., Vinet, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3688
container_issue 9
container_start_page 3682
container_title IEEE transactions on electron devices
container_volume 65
creator Bohuslavskyi, H.
Barraud, S.
Barral, V.
Casse, M.
Le Guevel, L.
Hutin, L.
Bertrand, B.
Crippa, A.
Jehl, X.
Pillonnet, G.
Jansen, A. G. M.
Arnaud, F.
Galy, P.
Maurand, R.
De Franceschi, S.
Sanquer, M.
Vinet, M.
description Extensive electrical characterization of ring oscillators (ROs) made in high- {k} metal gate 28-nm fully depleted silicon-on-insulator technology is presented for a set of temperatures between 296 and 4.3 K. First, delay per stage ( \tau _{P} ), static current ( {I} _{\textsf {STAT}} ), and dynamic current ( {I} _{\textsf {DYN}} ) are analyzed for the case of the increase of threshold voltage ( {V} _{\textsf {TH}} ) observed at low temperature. Then, the same analysis is performed by compensating {V} _{\textsf {TH}} to a constant, temperature-independent value through forward body biasing (FBB). Energy efficiency optimization is proposed for different supply voltages ( {V} _{\textsf {DD}} ) in order to find an optimal operating point combining both high RO frequencies and low-power dissipation. We show that the Energy-Delay product can be significantly reduced at low temperature by applying an FBB voltage ( {V} _{\textsf {FBB}} ). We demonstrate that outstanding performance of RO in terms of speed ( \tau _{P} = \textsf {37} ps) and static current (7nA/stage) can be achieved at 4.3 K with {V} _{\textsf {DD}} reduced down to 0.325 V.
doi_str_mv 10.1109/TED.2018.2859636
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8440625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8440625</ieee_id><sourcerecordid>2117131647</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-a978b11316c0adb3823dd2e049273e2cbbb3e09a88739f514bd534a9c33d561b3</originalsourceid><addsrcrecordid>eNo9kMFLwzAUxoMoOKd3wUvAk4fOvCRtk-PoOjcYDHTiMaRpumVs7Uw6Yf71dnR4erz3fu_jex9Cj0BGAES-rvLJiBIQIypimbDkCg0gjtNIJjy5RgPSrSLJBLtFdyFsuzbhnA6QyvypWdvaGZxttNemtd796tY1NW4qTEVU7_F0En0s5_jd1Wu8DMbtdrptfMBfrt3gvLZ-fcJ5VTnjbG1OeHlo3f4ico9uKr0L9uFSh-hzmq-yWbRYvs2z8SIyHHgbaZmKAoBBYoguCyYoK0tqCZc0ZZaaoiiYJVILkTJZxcCLMmZcS8NYGSdQsCF66XU3eqcO3u21P6lGOzUbL9R51v0vUojhBzr2uWcPvvk-2tCqbXP0dWdPUYD07IKnHUV6yvgmBG-rf1kg6hy56iJX58jVJfLu5Kk_cdbaf1xwThIasz_ZEHrZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117131647</pqid></control><display><type>article</type><title>Cryogenic Characterization of 28-nm FD-SOI Ring Oscillators With Energy Efficiency Optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Bohuslavskyi, H. ; Barraud, S. ; Barral, V. ; Casse, M. ; Le Guevel, L. ; Hutin, L. ; Bertrand, B. ; Crippa, A. ; Jehl, X. ; Pillonnet, G. ; Jansen, A. G. M. ; Arnaud, F. ; Galy, P. ; Maurand, R. ; De Franceschi, S. ; Sanquer, M. ; Vinet, M.</creator><creatorcontrib>Bohuslavskyi, H. ; Barraud, S. ; Barral, V. ; Casse, M. ; Le Guevel, L. ; Hutin, L. ; Bertrand, B. ; Crippa, A. ; Jehl, X. ; Pillonnet, G. ; Jansen, A. G. M. ; Arnaud, F. ; Galy, P. ; Maurand, R. ; De Franceschi, S. ; Sanquer, M. ; Vinet, M.</creatorcontrib><description><![CDATA[Extensive electrical characterization of ring oscillators (ROs) made in high-<inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula> metal gate 28-nm fully depleted silicon-on-insulator technology is presented for a set of temperatures between 296 and 4.3 K. First, delay per stage (<inline-formula> <tex-math notation="LaTeX">\tau _{P} </tex-math></inline-formula>), static current (<inline-formula> <tex-math notation="LaTeX">{I} _{\textsf {STAT}} </tex-math></inline-formula>), and dynamic current (<inline-formula> <tex-math notation="LaTeX">{I} _{\textsf {DYN}} </tex-math></inline-formula>) are analyzed for the case of the increase of threshold voltage (<inline-formula> <tex-math notation="LaTeX">{V} _{\textsf {TH}} </tex-math></inline-formula>) observed at low temperature. Then, the same analysis is performed by compensating <inline-formula> <tex-math notation="LaTeX">{V} _{\textsf {TH}} </tex-math></inline-formula> to a constant, temperature-independent value through forward body biasing (FBB). Energy efficiency optimization is proposed for different supply voltages (<inline-formula> <tex-math notation="LaTeX">{V} _{\textsf {DD}} </tex-math></inline-formula>) in order to find an optimal operating point combining both high RO frequencies and low-power dissipation. We show that the Energy-Delay product can be significantly reduced at low temperature by applying an FBB voltage (<inline-formula> <tex-math notation="LaTeX">{V} _{\textsf {FBB}} </tex-math></inline-formula>). We demonstrate that outstanding performance of RO in terms of speed (<inline-formula> <tex-math notation="LaTeX">\tau _{P} = \textsf {37} </tex-math></inline-formula> ps) and static current (7nA/stage) can be achieved at 4.3 K with <inline-formula> <tex-math notation="LaTeX">{V} _{\textsf {DD}} </tex-math></inline-formula> reduced down to 0.325 V.]]></description><identifier>ISSN: 0018-9383</identifier><identifier>EISSN: 1557-9646</identifier><identifier>DOI: 10.1109/TED.2018.2859636</identifier><identifier>CODEN: IETDAI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>28-nm fully depleted silicon-on-insulator (FD-SOI) ; body biasing ; cryogenic electronics ; Cryogenics ; Delay ; Delays ; Electrical properties ; Energy efficiency ; Engineering Sciences ; Logic gates ; Micro and nanotechnologies ; Microelectronics ; MOS devices ; Optimization ; Oscillators ; Power efficiency ; quantum computing ; ring oscillator (RO) ; SOI (semiconductors) ; Temperature ; Temperature distribution ; Threshold voltage ; Transistors ; ultralow power</subject><ispartof>IEEE transactions on electron devices, 2018-09, Vol.65 (9), p.3682-3688</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-a978b11316c0adb3823dd2e049273e2cbbb3e09a88739f514bd534a9c33d561b3</citedby><cites>FETCH-LOGICAL-c414t-a978b11316c0adb3823dd2e049273e2cbbb3e09a88739f514bd534a9c33d561b3</cites><orcidid>0000-0002-5342-9818 ; 0000-0003-0539-7185 ; 0000-0001-7785-1186 ; 0000-0002-1347-9693 ; 0000-0002-8706-9902 ; 0000-0002-2968-611X ; 0000-0001-6757-295X ; 0000-0003-3110-3371 ; 0000-0002-7592-7914 ; 0000-0002-4934-2445 ; 0000-0001-6429-3867 ; 0000-0001-6055-4046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8440625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8440625$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-01887151$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bohuslavskyi, H.</creatorcontrib><creatorcontrib>Barraud, S.</creatorcontrib><creatorcontrib>Barral, V.</creatorcontrib><creatorcontrib>Casse, M.</creatorcontrib><creatorcontrib>Le Guevel, L.</creatorcontrib><creatorcontrib>Hutin, L.</creatorcontrib><creatorcontrib>Bertrand, B.</creatorcontrib><creatorcontrib>Crippa, A.</creatorcontrib><creatorcontrib>Jehl, X.</creatorcontrib><creatorcontrib>Pillonnet, G.</creatorcontrib><creatorcontrib>Jansen, A. G. M.</creatorcontrib><creatorcontrib>Arnaud, F.</creatorcontrib><creatorcontrib>Galy, P.</creatorcontrib><creatorcontrib>Maurand, R.</creatorcontrib><creatorcontrib>De Franceschi, S.</creatorcontrib><creatorcontrib>Sanquer, M.</creatorcontrib><creatorcontrib>Vinet, M.</creatorcontrib><title>Cryogenic Characterization of 28-nm FD-SOI Ring Oscillators With Energy Efficiency Optimization</title><title>IEEE transactions on electron devices</title><addtitle>TED</addtitle><description><![CDATA[Extensive electrical characterization of ring oscillators (ROs) made in high-<inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula> metal gate 28-nm fully depleted silicon-on-insulator technology is presented for a set of temperatures between 296 and 4.3 K. First, delay per stage (<inline-formula> <tex-math notation="LaTeX">\tau _{P} </tex-math></inline-formula>), static current (<inline-formula> <tex-math notation="LaTeX">{I} _{\textsf {STAT}} </tex-math></inline-formula>), and dynamic current (<inline-formula> <tex-math notation="LaTeX">{I} _{\textsf {DYN}} </tex-math></inline-formula>) are analyzed for the case of the increase of threshold voltage (<inline-formula> <tex-math notation="LaTeX">{V} _{\textsf {TH}} </tex-math></inline-formula>) observed at low temperature. Then, the same analysis is performed by compensating <inline-formula> <tex-math notation="LaTeX">{V} _{\textsf {TH}} </tex-math></inline-formula> to a constant, temperature-independent value through forward body biasing (FBB). Energy efficiency optimization is proposed for different supply voltages (<inline-formula> <tex-math notation="LaTeX">{V} _{\textsf {DD}} </tex-math></inline-formula>) in order to find an optimal operating point combining both high RO frequencies and low-power dissipation. We show that the Energy-Delay product can be significantly reduced at low temperature by applying an FBB voltage (<inline-formula> <tex-math notation="LaTeX">{V} _{\textsf {FBB}} </tex-math></inline-formula>). We demonstrate that outstanding performance of RO in terms of speed (<inline-formula> <tex-math notation="LaTeX">\tau _{P} = \textsf {37} </tex-math></inline-formula> ps) and static current (7nA/stage) can be achieved at 4.3 K with <inline-formula> <tex-math notation="LaTeX">{V} _{\textsf {DD}} </tex-math></inline-formula> reduced down to 0.325 V.]]></description><subject>28-nm fully depleted silicon-on-insulator (FD-SOI)</subject><subject>body biasing</subject><subject>cryogenic electronics</subject><subject>Cryogenics</subject><subject>Delay</subject><subject>Delays</subject><subject>Electrical properties</subject><subject>Energy efficiency</subject><subject>Engineering Sciences</subject><subject>Logic gates</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>MOS devices</subject><subject>Optimization</subject><subject>Oscillators</subject><subject>Power efficiency</subject><subject>quantum computing</subject><subject>ring oscillator (RO)</subject><subject>SOI (semiconductors)</subject><subject>Temperature</subject><subject>Temperature distribution</subject><subject>Threshold voltage</subject><subject>Transistors</subject><subject>ultralow power</subject><issn>0018-9383</issn><issn>1557-9646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAUxoMoOKd3wUvAk4fOvCRtk-PoOjcYDHTiMaRpumVs7Uw6Yf71dnR4erz3fu_jex9Cj0BGAES-rvLJiBIQIypimbDkCg0gjtNIJjy5RgPSrSLJBLtFdyFsuzbhnA6QyvypWdvaGZxttNemtd796tY1NW4qTEVU7_F0En0s5_jd1Wu8DMbtdrptfMBfrt3gvLZ-fcJ5VTnjbG1OeHlo3f4ico9uKr0L9uFSh-hzmq-yWbRYvs2z8SIyHHgbaZmKAoBBYoguCyYoK0tqCZc0ZZaaoiiYJVILkTJZxcCLMmZcS8NYGSdQsCF66XU3eqcO3u21P6lGOzUbL9R51v0vUojhBzr2uWcPvvk-2tCqbXP0dWdPUYD07IKnHUV6yvgmBG-rf1kg6hy56iJX58jVJfLu5Kk_cdbaf1xwThIasz_ZEHrZ</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Bohuslavskyi, H.</creator><creator>Barraud, S.</creator><creator>Barral, V.</creator><creator>Casse, M.</creator><creator>Le Guevel, L.</creator><creator>Hutin, L.</creator><creator>Bertrand, B.</creator><creator>Crippa, A.</creator><creator>Jehl, X.</creator><creator>Pillonnet, G.</creator><creator>Jansen, A. G. M.</creator><creator>Arnaud, F.</creator><creator>Galy, P.</creator><creator>Maurand, R.</creator><creator>De Franceschi, S.</creator><creator>Sanquer, M.</creator><creator>Vinet, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5342-9818</orcidid><orcidid>https://orcid.org/0000-0003-0539-7185</orcidid><orcidid>https://orcid.org/0000-0001-7785-1186</orcidid><orcidid>https://orcid.org/0000-0002-1347-9693</orcidid><orcidid>https://orcid.org/0000-0002-8706-9902</orcidid><orcidid>https://orcid.org/0000-0002-2968-611X</orcidid><orcidid>https://orcid.org/0000-0001-6757-295X</orcidid><orcidid>https://orcid.org/0000-0003-3110-3371</orcidid><orcidid>https://orcid.org/0000-0002-7592-7914</orcidid><orcidid>https://orcid.org/0000-0002-4934-2445</orcidid><orcidid>https://orcid.org/0000-0001-6429-3867</orcidid><orcidid>https://orcid.org/0000-0001-6055-4046</orcidid></search><sort><creationdate>20180901</creationdate><title>Cryogenic Characterization of 28-nm FD-SOI Ring Oscillators With Energy Efficiency Optimization</title><author>Bohuslavskyi, H. ; Barraud, S. ; Barral, V. ; Casse, M. ; Le Guevel, L. ; Hutin, L. ; Bertrand, B. ; Crippa, A. ; Jehl, X. ; Pillonnet, G. ; Jansen, A. G. M. ; Arnaud, F. ; Galy, P. ; Maurand, R. ; De Franceschi, S. ; Sanquer, M. ; Vinet, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-a978b11316c0adb3823dd2e049273e2cbbb3e09a88739f514bd534a9c33d561b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>28-nm fully depleted silicon-on-insulator (FD-SOI)</topic><topic>body biasing</topic><topic>cryogenic electronics</topic><topic>Cryogenics</topic><topic>Delay</topic><topic>Delays</topic><topic>Electrical properties</topic><topic>Energy efficiency</topic><topic>Engineering Sciences</topic><topic>Logic gates</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>MOS devices</topic><topic>Optimization</topic><topic>Oscillators</topic><topic>Power efficiency</topic><topic>quantum computing</topic><topic>ring oscillator (RO)</topic><topic>SOI (semiconductors)</topic><topic>Temperature</topic><topic>Temperature distribution</topic><topic>Threshold voltage</topic><topic>Transistors</topic><topic>ultralow power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bohuslavskyi, H.</creatorcontrib><creatorcontrib>Barraud, S.</creatorcontrib><creatorcontrib>Barral, V.</creatorcontrib><creatorcontrib>Casse, M.</creatorcontrib><creatorcontrib>Le Guevel, L.</creatorcontrib><creatorcontrib>Hutin, L.</creatorcontrib><creatorcontrib>Bertrand, B.</creatorcontrib><creatorcontrib>Crippa, A.</creatorcontrib><creatorcontrib>Jehl, X.</creatorcontrib><creatorcontrib>Pillonnet, G.</creatorcontrib><creatorcontrib>Jansen, A. G. M.</creatorcontrib><creatorcontrib>Arnaud, F.</creatorcontrib><creatorcontrib>Galy, P.</creatorcontrib><creatorcontrib>Maurand, R.</creatorcontrib><creatorcontrib>De Franceschi, S.</creatorcontrib><creatorcontrib>Sanquer, M.</creatorcontrib><creatorcontrib>Vinet, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on electron devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bohuslavskyi, H.</au><au>Barraud, S.</au><au>Barral, V.</au><au>Casse, M.</au><au>Le Guevel, L.</au><au>Hutin, L.</au><au>Bertrand, B.</au><au>Crippa, A.</au><au>Jehl, X.</au><au>Pillonnet, G.</au><au>Jansen, A. G. M.</au><au>Arnaud, F.</au><au>Galy, P.</au><au>Maurand, R.</au><au>De Franceschi, S.</au><au>Sanquer, M.</au><au>Vinet, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryogenic Characterization of 28-nm FD-SOI Ring Oscillators With Energy Efficiency Optimization</atitle><jtitle>IEEE transactions on electron devices</jtitle><stitle>TED</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>65</volume><issue>9</issue><spage>3682</spage><epage>3688</epage><pages>3682-3688</pages><issn>0018-9383</issn><eissn>1557-9646</eissn><coden>IETDAI</coden><abstract><![CDATA[Extensive electrical characterization of ring oscillators (ROs) made in high-<inline-formula> <tex-math notation="LaTeX">{k} </tex-math></inline-formula> metal gate 28-nm fully depleted silicon-on-insulator technology is presented for a set of temperatures between 296 and 4.3 K. First, delay per stage (<inline-formula> <tex-math notation="LaTeX">\tau _{P} </tex-math></inline-formula>), static current (<inline-formula> <tex-math notation="LaTeX">{I} _{\textsf {STAT}} </tex-math></inline-formula>), and dynamic current (<inline-formula> <tex-math notation="LaTeX">{I} _{\textsf {DYN}} </tex-math></inline-formula>) are analyzed for the case of the increase of threshold voltage (<inline-formula> <tex-math notation="LaTeX">{V} _{\textsf {TH}} </tex-math></inline-formula>) observed at low temperature. Then, the same analysis is performed by compensating <inline-formula> <tex-math notation="LaTeX">{V} _{\textsf {TH}} </tex-math></inline-formula> to a constant, temperature-independent value through forward body biasing (FBB). Energy efficiency optimization is proposed for different supply voltages (<inline-formula> <tex-math notation="LaTeX">{V} _{\textsf {DD}} </tex-math></inline-formula>) in order to find an optimal operating point combining both high RO frequencies and low-power dissipation. We show that the Energy-Delay product can be significantly reduced at low temperature by applying an FBB voltage (<inline-formula> <tex-math notation="LaTeX">{V} _{\textsf {FBB}} </tex-math></inline-formula>). We demonstrate that outstanding performance of RO in terms of speed (<inline-formula> <tex-math notation="LaTeX">\tau _{P} = \textsf {37} </tex-math></inline-formula> ps) and static current (7nA/stage) can be achieved at 4.3 K with <inline-formula> <tex-math notation="LaTeX">{V} _{\textsf {DD}} </tex-math></inline-formula> reduced down to 0.325 V.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TED.2018.2859636</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5342-9818</orcidid><orcidid>https://orcid.org/0000-0003-0539-7185</orcidid><orcidid>https://orcid.org/0000-0001-7785-1186</orcidid><orcidid>https://orcid.org/0000-0002-1347-9693</orcidid><orcidid>https://orcid.org/0000-0002-8706-9902</orcidid><orcidid>https://orcid.org/0000-0002-2968-611X</orcidid><orcidid>https://orcid.org/0000-0001-6757-295X</orcidid><orcidid>https://orcid.org/0000-0003-3110-3371</orcidid><orcidid>https://orcid.org/0000-0002-7592-7914</orcidid><orcidid>https://orcid.org/0000-0002-4934-2445</orcidid><orcidid>https://orcid.org/0000-0001-6429-3867</orcidid><orcidid>https://orcid.org/0000-0001-6055-4046</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9383
ispartof IEEE transactions on electron devices, 2018-09, Vol.65 (9), p.3682-3688
issn 0018-9383
1557-9646
language eng
recordid cdi_ieee_primary_8440625
source IEEE Electronic Library (IEL)
subjects 28-nm fully depleted silicon-on-insulator (FD-SOI)
body biasing
cryogenic electronics
Cryogenics
Delay
Delays
Electrical properties
Energy efficiency
Engineering Sciences
Logic gates
Micro and nanotechnologies
Microelectronics
MOS devices
Optimization
Oscillators
Power efficiency
quantum computing
ring oscillator (RO)
SOI (semiconductors)
Temperature
Temperature distribution
Threshold voltage
Transistors
ultralow power
title Cryogenic Characterization of 28-nm FD-SOI Ring Oscillators With Energy Efficiency Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A39%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryogenic%20Characterization%20of%2028-nm%20FD-SOI%20Ring%20Oscillators%20With%20Energy%20Efficiency%20Optimization&rft.jtitle=IEEE%20transactions%20on%20electron%20devices&rft.au=Bohuslavskyi,%20H.&rft.date=2018-09-01&rft.volume=65&rft.issue=9&rft.spage=3682&rft.epage=3688&rft.pages=3682-3688&rft.issn=0018-9383&rft.eissn=1557-9646&rft.coden=IETDAI&rft_id=info:doi/10.1109/TED.2018.2859636&rft_dat=%3Cproquest_RIE%3E2117131647%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117131647&rft_id=info:pmid/&rft_ieee_id=8440625&rfr_iscdi=true