Stochastic Transmission Expansion Planning Considering Uncertain Dynamic Thermal Rating of Overhead Lines

Dynamic thermal rating (DTR) is an important smart grid technology that can bring considerable economic benefits. One of the most important benefits of DTR is to postpone new investment. This paper proposes a novel stochastic transmission expansion planning (STEP) model considering the DTR of overhe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2019-01, Vol.34 (1), p.432-443
Hauptverfasser: Zhan, Junpeng, Liu, Weijia, Chung, C. Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dynamic thermal rating (DTR) is an important smart grid technology that can bring considerable economic benefits. One of the most important benefits of DTR is to postpone new investment. This paper proposes a novel stochastic transmission expansion planning (STEP) model considering the DTR of overhead lines. The objective function of the STEP model includes operational costs and the investment costs of new line construction and DTR systems installation. The model can determine where to build new lines and install DTR systems. The model cannot only realize the benefits that occur when the DTR is higher than the static thermal rating (STR) but also avoid overload risk, i.e., the power flow on a line being larger than the line's real capacity, caused by the DTR being lower than the STR. The model can consider both the voltage magnitude and phase angle of each bus. The model is linearized and therefore can be effectively solved by a Benders decomposition method. Furthermore, a new way of scenario reduction is proposed to obtain a better set of reduced scenarios. The effectiveness of the model is verified on a modified IEEE reliability test system and a modified IEEE 300-bus system.
ISSN:0885-8950
1558-0679
DOI:10.1109/TPWRS.2018.2857698