Contour-Seed Pairs Learning-Based Framework for Simultaneously Detecting and Segmenting Various Overlapping Cells/Nuclei in Microscopy Images

In this paper, we propose a novel contour-seed pairs learning-based framework for robust and automated cell/nucleus segmentation. Automated granular object segmentation in microscopy images has significant clinical importance for pathology grading of the cell carcinoma and gene expression. The focus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2018-12, Vol.27 (12), p.5759-5774
Hauptverfasser: Song, Jie, Xiao, Liang, Lian, Zhichao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5774
container_issue 12
container_start_page 5759
container_title IEEE transactions on image processing
container_volume 27
creator Song, Jie
Xiao, Liang
Lian, Zhichao
description In this paper, we propose a novel contour-seed pairs learning-based framework for robust and automated cell/nucleus segmentation. Automated granular object segmentation in microscopy images has significant clinical importance for pathology grading of the cell carcinoma and gene expression. The focus of the past literature is dominated by either segmenting a certain type of cells/nuclei or simply splitting the clustered objects without contours inference of them. Our method addresses these issues by formulating the detection and segmentation tasks in terms of a unified regression problem, where a cascade sparse regression chain model is trained and then applied to return object locations and entire boundaries of clustered objects. In particular, we first learn a set of online convolutional features in each layer. Then, in the proposed cascade sparse regression chain, with the input from the learned features, we iteratively update the locations and clustered object boundaries until convergence. In this way, the boundary evidences of each individual object can be easily delineated and be further fed to a complete contour inference procedure optimized by the minimum description length principle. For any probe image, our method enables to analyze free-lying and overlapping cells with complex shapes. Experimental results show that the proposed method is very generic and performs well on contour inferences of various cell/nucleus types. Compared with the current segmentation techniques, our approach achieves state-of-the-art performances on four challenging datasets, i.e., the kidney renal cell carcinoma histopathology dataset, Drosophila Kc167 cellular dataset, differential interference contrast red blood cell dataset, and cervical cytology dataset.
doi_str_mv 10.1109/TIP.2018.2857001
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8412504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8412504</ieee_id><sourcerecordid>2117161929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-a32f47040ed7dfa828ca650749da4b34d458b902158caa0b73268cef651fd2693</originalsourceid><addsrcrecordid>eNpdkU9v1DAQxS1ERUvhjoSELHHhku2M7cTJEbaUrrTQSlu4Wt5ksnLJv9pJ0X4IvjMOu_TAyfbMb57e-DH2BmGBCMXF3ep2IQDzhchTDYDP2BkWChMAJZ7HO6Q60aiKU_YyhPsIqBSzF-xUAohcA56x38u-G_vJJxuiit9a5wNfk_Wd63bJJxti8crbln71_ieve883rp2a0XbUT6HZ80saqRwjzG1X8Q3tWur-Pn9Y7yLCbx7JN3YY5tqSmiZcfJvKhhx3Hf_qSt-Hsh_2fNXaHYVX7KS2TaDXx_Ocfb_6fLe8TtY3X1bLj-uklEqPiZWiVhoUUKWr2uYiL22WglZFZdVWqkql-bYAgWlsWNhqKbK8pDpLsa5EVshz9uGgO_j-YaIwmtaFMro77GUEaCmFQJFG9P1_6H38ri66MwJRY4aFmAXhQM0LBU-1Gbxrrd8bBDNHZWJUZo7KHKOKI--OwtO2pepp4F82EXh7ABwRPbVzFV2Bkn8AO1KYpA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117161929</pqid></control><display><type>article</type><title>Contour-Seed Pairs Learning-Based Framework for Simultaneously Detecting and Segmenting Various Overlapping Cells/Nuclei in Microscopy Images</title><source>IEEE Electronic Library (IEL)</source><creator>Song, Jie ; Xiao, Liang ; Lian, Zhichao</creator><creatorcontrib>Song, Jie ; Xiao, Liang ; Lian, Zhichao</creatorcontrib><description>In this paper, we propose a novel contour-seed pairs learning-based framework for robust and automated cell/nucleus segmentation. Automated granular object segmentation in microscopy images has significant clinical importance for pathology grading of the cell carcinoma and gene expression. The focus of the past literature is dominated by either segmenting a certain type of cells/nuclei or simply splitting the clustered objects without contours inference of them. Our method addresses these issues by formulating the detection and segmentation tasks in terms of a unified regression problem, where a cascade sparse regression chain model is trained and then applied to return object locations and entire boundaries of clustered objects. In particular, we first learn a set of online convolutional features in each layer. Then, in the proposed cascade sparse regression chain, with the input from the learned features, we iteratively update the locations and clustered object boundaries until convergence. In this way, the boundary evidences of each individual object can be easily delineated and be further fed to a complete contour inference procedure optimized by the minimum description length principle. For any probe image, our method enables to analyze free-lying and overlapping cells with complex shapes. Experimental results show that the proposed method is very generic and performs well on contour inferences of various cell/nucleus types. Compared with the current segmentation techniques, our approach achieves state-of-the-art performances on four challenging datasets, i.e., the kidney renal cell carcinoma histopathology dataset, Drosophila Kc167 cellular dataset, differential interference contrast red blood cell dataset, and cervical cytology dataset.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2018.2857001</identifier><identifier>PMID: 30028701</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Active contours ; Algorithms ; Animals ; Automation ; Boundaries ; cascade sparse regression chain model ; Cell Line ; Cell Nucleus - physiology ; Cervix Uteri - cytology ; Chains ; complete contour inference ; contour-seed pairs learning ; Contours ; Cytology ; Datasets ; Distance learning ; Drosophila - cytology ; Erythrocytes ; Female ; Fruit flies ; Gene expression ; Humans ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Inference ; Interference ; Kidneys ; Machine Learning ; Medical imaging ; Microscopy ; Microscopy - methods ; Microscopy image segmentation ; Nuclei (cytology) ; Regression analysis ; Regression models ; Robustness ; Shape ; Splines (mathematics)</subject><ispartof>IEEE transactions on image processing, 2018-12, Vol.27 (12), p.5759-5774</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-a32f47040ed7dfa828ca650749da4b34d458b902158caa0b73268cef651fd2693</citedby><cites>FETCH-LOGICAL-c347t-a32f47040ed7dfa828ca650749da4b34d458b902158caa0b73268cef651fd2693</cites><orcidid>0000-0003-0178-9384</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8412504$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8412504$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30028701$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Jie</creatorcontrib><creatorcontrib>Xiao, Liang</creatorcontrib><creatorcontrib>Lian, Zhichao</creatorcontrib><title>Contour-Seed Pairs Learning-Based Framework for Simultaneously Detecting and Segmenting Various Overlapping Cells/Nuclei in Microscopy Images</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>In this paper, we propose a novel contour-seed pairs learning-based framework for robust and automated cell/nucleus segmentation. Automated granular object segmentation in microscopy images has significant clinical importance for pathology grading of the cell carcinoma and gene expression. The focus of the past literature is dominated by either segmenting a certain type of cells/nuclei or simply splitting the clustered objects without contours inference of them. Our method addresses these issues by formulating the detection and segmentation tasks in terms of a unified regression problem, where a cascade sparse regression chain model is trained and then applied to return object locations and entire boundaries of clustered objects. In particular, we first learn a set of online convolutional features in each layer. Then, in the proposed cascade sparse regression chain, with the input from the learned features, we iteratively update the locations and clustered object boundaries until convergence. In this way, the boundary evidences of each individual object can be easily delineated and be further fed to a complete contour inference procedure optimized by the minimum description length principle. For any probe image, our method enables to analyze free-lying and overlapping cells with complex shapes. Experimental results show that the proposed method is very generic and performs well on contour inferences of various cell/nucleus types. Compared with the current segmentation techniques, our approach achieves state-of-the-art performances on four challenging datasets, i.e., the kidney renal cell carcinoma histopathology dataset, Drosophila Kc167 cellular dataset, differential interference contrast red blood cell dataset, and cervical cytology dataset.</description><subject>Active contours</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Automation</subject><subject>Boundaries</subject><subject>cascade sparse regression chain model</subject><subject>Cell Line</subject><subject>Cell Nucleus - physiology</subject><subject>Cervix Uteri - cytology</subject><subject>Chains</subject><subject>complete contour inference</subject><subject>contour-seed pairs learning</subject><subject>Contours</subject><subject>Cytology</subject><subject>Datasets</subject><subject>Distance learning</subject><subject>Drosophila - cytology</subject><subject>Erythrocytes</subject><subject>Female</subject><subject>Fruit flies</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Inference</subject><subject>Interference</subject><subject>Kidneys</subject><subject>Machine Learning</subject><subject>Medical imaging</subject><subject>Microscopy</subject><subject>Microscopy - methods</subject><subject>Microscopy image segmentation</subject><subject>Nuclei (cytology)</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Robustness</subject><subject>Shape</subject><subject>Splines (mathematics)</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkU9v1DAQxS1ERUvhjoSELHHhku2M7cTJEbaUrrTQSlu4Wt5ksnLJv9pJ0X4IvjMOu_TAyfbMb57e-DH2BmGBCMXF3ep2IQDzhchTDYDP2BkWChMAJZ7HO6Q60aiKU_YyhPsIqBSzF-xUAohcA56x38u-G_vJJxuiit9a5wNfk_Wd63bJJxti8crbln71_ieve883rp2a0XbUT6HZ80saqRwjzG1X8Q3tWur-Pn9Y7yLCbx7JN3YY5tqSmiZcfJvKhhx3Hf_qSt-Hsh_2fNXaHYVX7KS2TaDXx_Ocfb_6fLe8TtY3X1bLj-uklEqPiZWiVhoUUKWr2uYiL22WglZFZdVWqkql-bYAgWlsWNhqKbK8pDpLsa5EVshz9uGgO_j-YaIwmtaFMro77GUEaCmFQJFG9P1_6H38ri66MwJRY4aFmAXhQM0LBU-1Gbxrrd8bBDNHZWJUZo7KHKOKI--OwtO2pepp4F82EXh7ABwRPbVzFV2Bkn8AO1KYpA</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Song, Jie</creator><creator>Xiao, Liang</creator><creator>Lian, Zhichao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0178-9384</orcidid></search><sort><creationdate>20181201</creationdate><title>Contour-Seed Pairs Learning-Based Framework for Simultaneously Detecting and Segmenting Various Overlapping Cells/Nuclei in Microscopy Images</title><author>Song, Jie ; Xiao, Liang ; Lian, Zhichao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-a32f47040ed7dfa828ca650749da4b34d458b902158caa0b73268cef651fd2693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Active contours</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Automation</topic><topic>Boundaries</topic><topic>cascade sparse regression chain model</topic><topic>Cell Line</topic><topic>Cell Nucleus - physiology</topic><topic>Cervix Uteri - cytology</topic><topic>Chains</topic><topic>complete contour inference</topic><topic>contour-seed pairs learning</topic><topic>Contours</topic><topic>Cytology</topic><topic>Datasets</topic><topic>Distance learning</topic><topic>Drosophila - cytology</topic><topic>Erythrocytes</topic><topic>Female</topic><topic>Fruit flies</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Inference</topic><topic>Interference</topic><topic>Kidneys</topic><topic>Machine Learning</topic><topic>Medical imaging</topic><topic>Microscopy</topic><topic>Microscopy - methods</topic><topic>Microscopy image segmentation</topic><topic>Nuclei (cytology)</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Robustness</topic><topic>Shape</topic><topic>Splines (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Jie</creatorcontrib><creatorcontrib>Xiao, Liang</creatorcontrib><creatorcontrib>Lian, Zhichao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Song, Jie</au><au>Xiao, Liang</au><au>Lian, Zhichao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contour-Seed Pairs Learning-Based Framework for Simultaneously Detecting and Segmenting Various Overlapping Cells/Nuclei in Microscopy Images</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>27</volume><issue>12</issue><spage>5759</spage><epage>5774</epage><pages>5759-5774</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>In this paper, we propose a novel contour-seed pairs learning-based framework for robust and automated cell/nucleus segmentation. Automated granular object segmentation in microscopy images has significant clinical importance for pathology grading of the cell carcinoma and gene expression. The focus of the past literature is dominated by either segmenting a certain type of cells/nuclei or simply splitting the clustered objects without contours inference of them. Our method addresses these issues by formulating the detection and segmentation tasks in terms of a unified regression problem, where a cascade sparse regression chain model is trained and then applied to return object locations and entire boundaries of clustered objects. In particular, we first learn a set of online convolutional features in each layer. Then, in the proposed cascade sparse regression chain, with the input from the learned features, we iteratively update the locations and clustered object boundaries until convergence. In this way, the boundary evidences of each individual object can be easily delineated and be further fed to a complete contour inference procedure optimized by the minimum description length principle. For any probe image, our method enables to analyze free-lying and overlapping cells with complex shapes. Experimental results show that the proposed method is very generic and performs well on contour inferences of various cell/nucleus types. Compared with the current segmentation techniques, our approach achieves state-of-the-art performances on four challenging datasets, i.e., the kidney renal cell carcinoma histopathology dataset, Drosophila Kc167 cellular dataset, differential interference contrast red blood cell dataset, and cervical cytology dataset.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30028701</pmid><doi>10.1109/TIP.2018.2857001</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0178-9384</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2018-12, Vol.27 (12), p.5759-5774
issn 1057-7149
1941-0042
language eng
recordid cdi_ieee_primary_8412504
source IEEE Electronic Library (IEL)
subjects Active contours
Algorithms
Animals
Automation
Boundaries
cascade sparse regression chain model
Cell Line
Cell Nucleus - physiology
Cervix Uteri - cytology
Chains
complete contour inference
contour-seed pairs learning
Contours
Cytology
Datasets
Distance learning
Drosophila - cytology
Erythrocytes
Female
Fruit flies
Gene expression
Humans
Image Processing, Computer-Assisted - methods
Image segmentation
Inference
Interference
Kidneys
Machine Learning
Medical imaging
Microscopy
Microscopy - methods
Microscopy image segmentation
Nuclei (cytology)
Regression analysis
Regression models
Robustness
Shape
Splines (mathematics)
title Contour-Seed Pairs Learning-Based Framework for Simultaneously Detecting and Segmenting Various Overlapping Cells/Nuclei in Microscopy Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A09%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contour-Seed%20Pairs%20Learning-Based%20Framework%20for%20Simultaneously%20Detecting%20and%20Segmenting%20Various%20Overlapping%20Cells/Nuclei%20in%20Microscopy%20Images&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Song,%20Jie&rft.date=2018-12-01&rft.volume=27&rft.issue=12&rft.spage=5759&rft.epage=5774&rft.pages=5759-5774&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2018.2857001&rft_dat=%3Cproquest_RIE%3E2117161929%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117161929&rft_id=info:pmid/30028701&rft_ieee_id=8412504&rfr_iscdi=true