Shape Preserving Incremental Learning for Power Systems Fault Detection

This letter presents a shape preserving incremental learning algorithm that employs a novel shape-based metric called the Fisher-Rao amplitude-phase distance (FRAPD) metric. The combined amplitude and phase distance metric is achieved on a function space from the Fisher-Rao elastic registration. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE control systems letters 2019-01, Vol.3 (1), p.85-90
Hauptverfasser: Cordova, Jose, Soto, Carlos, Gilanifar, Mostafa, Yuxun Zhou, Srivastava, Anuj, Arghandeh, Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This letter presents a shape preserving incremental learning algorithm that employs a novel shape-based metric called the Fisher-Rao amplitude-phase distance (FRAPD) metric. The combined amplitude and phase distance metric is achieved on a function space from the Fisher-Rao elastic registration. We utilize an exhaustive search method for selecting the optimal parameter that captures the amplitude and phase distance contribution in FRAPD when performing a clustering process. The proposed incremental learning structure based on the shape preserving FRAPD distance metric utilizes continuously updated fault shape templates with the Karcher mean. The seamless updating of abnormal events enhances the clustering performance for power systems fault detection. The algorithm is validated using the actual data from real-time hardware-in-the-loop testbed.
ISSN:2475-1456
2475-1456
DOI:10.1109/LCSYS.2018.2852064