A Deep Reinforcement Learning-Based Framework for Dynamic Resource Allocation in Multibeam Satellite Systems

Dynamic resource allocation (DRA) is the key technology to improve the network performance in resource-limited multibeam satellite (MBS) systems. The aim is to find a policy that maximizes the expected long-term resource utilization. Existing iterative metaheuristics DRA optimization algorithms are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2018-08, Vol.22 (8), p.1612-1615
Hauptverfasser: Hu, Xin, Liu, Shuaijun, Chen, Rong, Wang, Weidong, Wang, Chunting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1615
container_issue 8
container_start_page 1612
container_title IEEE communications letters
container_volume 22
creator Hu, Xin
Liu, Shuaijun
Chen, Rong
Wang, Weidong
Wang, Chunting
description Dynamic resource allocation (DRA) is the key technology to improve the network performance in resource-limited multibeam satellite (MBS) systems. The aim is to find a policy that maximizes the expected long-term resource utilization. Existing iterative metaheuristics DRA optimization algorithms are not practical due to the high computational complexity. To solve the problem of unknown dynamics and prohibitive computation, a deep reinforcement learning-based framework (DRLF) is proposed for DRA problems in MBS systems. A novel image-like tensor reformulation on the system environments is adopted to extract traffic spatial and temporal features. A use case of dynamic channel allocation in DRLF is simulated and shows the effectiveness of the proposed DRLF in time-varying scenarios.
doi_str_mv 10.1109/LCOMM.2018.2844243
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8372935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8372935</ieee_id><sourcerecordid>2117130690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-c1b70dbdc2b6f61179962582f6136517accd4fb264aeca3b7fe7b1fe484fd6643</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhCMEEqXwB-BiiXOKH3nYx9JSQEpVicLZcpwNckmcYrtC_fe4tOKyO4f5ZleTJLcETwjB4qGarZbLCcWETyjPMpqxs2RE8pynNI7zqDEXaVkKfplceb_BGHOak1HSTdEcYIvewNh2cBp6sAFVoJw19jN9VB4atHCqh5_BfaFoQfO9Vb3REfHDLhJo2nWDVsEMFhmLlrsumBpUj9YqQNeZAGi99wF6f51ctKrzcHPa4-Rj8fQ-e0mr1fPrbFqlmoo8pJrUJW7qRtO6aAtCSiEKmnMaNStyUiqtm6ytaZEp0IrVZQtlTVrIeNY2RZGxcXJ_zN264XsHPshN_NTGk5LGOMJwIXB00aNLu8F7B63cOtMrt5cEy0Or8q9VeWhVnlqN0N0RMgDwD3BWUsFy9gtcWHTK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117130690</pqid></control><display><type>article</type><title>A Deep Reinforcement Learning-Based Framework for Dynamic Resource Allocation in Multibeam Satellite Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Hu, Xin ; Liu, Shuaijun ; Chen, Rong ; Wang, Weidong ; Wang, Chunting</creator><creatorcontrib>Hu, Xin ; Liu, Shuaijun ; Chen, Rong ; Wang, Weidong ; Wang, Chunting</creatorcontrib><description>Dynamic resource allocation (DRA) is the key technology to improve the network performance in resource-limited multibeam satellite (MBS) systems. The aim is to find a policy that maximizes the expected long-term resource utilization. Existing iterative metaheuristics DRA optimization algorithms are not practical due to the high computational complexity. To solve the problem of unknown dynamics and prohibitive computation, a deep reinforcement learning-based framework (DRLF) is proposed for DRA problems in MBS systems. A novel image-like tensor reformulation on the system environments is adopted to extract traffic spatial and temporal features. A use case of dynamic channel allocation in DRLF is simulated and shows the effectiveness of the proposed DRLF in time-varying scenarios.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2018.2844243</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; deep reinforcement learning (DRL) ; Dynamic resource allocation (DRA) ; Dynamic scheduling ; Feature extraction ; Heuristic algorithms ; Iterative methods ; multibeam satellite (MBS) ; Optimization ; Quality of service ; Resource allocation ; Resource management ; Satellites ; state reformulation ; Tensile stress</subject><ispartof>IEEE communications letters, 2018-08, Vol.22 (8), p.1612-1615</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-c1b70dbdc2b6f61179962582f6136517accd4fb264aeca3b7fe7b1fe484fd6643</citedby><cites>FETCH-LOGICAL-c295t-c1b70dbdc2b6f61179962582f6136517accd4fb264aeca3b7fe7b1fe484fd6643</cites><orcidid>0000-0002-5338-5464 ; 0000-0003-0221-8102</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8372935$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8372935$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hu, Xin</creatorcontrib><creatorcontrib>Liu, Shuaijun</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Wang, Weidong</creatorcontrib><creatorcontrib>Wang, Chunting</creatorcontrib><title>A Deep Reinforcement Learning-Based Framework for Dynamic Resource Allocation in Multibeam Satellite Systems</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>Dynamic resource allocation (DRA) is the key technology to improve the network performance in resource-limited multibeam satellite (MBS) systems. The aim is to find a policy that maximizes the expected long-term resource utilization. Existing iterative metaheuristics DRA optimization algorithms are not practical due to the high computational complexity. To solve the problem of unknown dynamics and prohibitive computation, a deep reinforcement learning-based framework (DRLF) is proposed for DRA problems in MBS systems. A novel image-like tensor reformulation on the system environments is adopted to extract traffic spatial and temporal features. A use case of dynamic channel allocation in DRLF is simulated and shows the effectiveness of the proposed DRLF in time-varying scenarios.</description><subject>Computer simulation</subject><subject>deep reinforcement learning (DRL)</subject><subject>Dynamic resource allocation (DRA)</subject><subject>Dynamic scheduling</subject><subject>Feature extraction</subject><subject>Heuristic algorithms</subject><subject>Iterative methods</subject><subject>multibeam satellite (MBS)</subject><subject>Optimization</subject><subject>Quality of service</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Satellites</subject><subject>state reformulation</subject><subject>Tensile stress</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhCMEEqXwB-BiiXOKH3nYx9JSQEpVicLZcpwNckmcYrtC_fe4tOKyO4f5ZleTJLcETwjB4qGarZbLCcWETyjPMpqxs2RE8pynNI7zqDEXaVkKfplceb_BGHOak1HSTdEcYIvewNh2cBp6sAFVoJw19jN9VB4atHCqh5_BfaFoQfO9Vb3REfHDLhJo2nWDVsEMFhmLlrsumBpUj9YqQNeZAGi99wF6f51ctKrzcHPa4-Rj8fQ-e0mr1fPrbFqlmoo8pJrUJW7qRtO6aAtCSiEKmnMaNStyUiqtm6ytaZEp0IrVZQtlTVrIeNY2RZGxcXJ_zN264XsHPshN_NTGk5LGOMJwIXB00aNLu8F7B63cOtMrt5cEy0Or8q9VeWhVnlqN0N0RMgDwD3BWUsFy9gtcWHTK</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Hu, Xin</creator><creator>Liu, Shuaijun</creator><creator>Chen, Rong</creator><creator>Wang, Weidong</creator><creator>Wang, Chunting</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5338-5464</orcidid><orcidid>https://orcid.org/0000-0003-0221-8102</orcidid></search><sort><creationdate>20180801</creationdate><title>A Deep Reinforcement Learning-Based Framework for Dynamic Resource Allocation in Multibeam Satellite Systems</title><author>Hu, Xin ; Liu, Shuaijun ; Chen, Rong ; Wang, Weidong ; Wang, Chunting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-c1b70dbdc2b6f61179962582f6136517accd4fb264aeca3b7fe7b1fe484fd6643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>deep reinforcement learning (DRL)</topic><topic>Dynamic resource allocation (DRA)</topic><topic>Dynamic scheduling</topic><topic>Feature extraction</topic><topic>Heuristic algorithms</topic><topic>Iterative methods</topic><topic>multibeam satellite (MBS)</topic><topic>Optimization</topic><topic>Quality of service</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Satellites</topic><topic>state reformulation</topic><topic>Tensile stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xin</creatorcontrib><creatorcontrib>Liu, Shuaijun</creatorcontrib><creatorcontrib>Chen, Rong</creatorcontrib><creatorcontrib>Wang, Weidong</creatorcontrib><creatorcontrib>Wang, Chunting</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hu, Xin</au><au>Liu, Shuaijun</au><au>Chen, Rong</au><au>Wang, Weidong</au><au>Wang, Chunting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Deep Reinforcement Learning-Based Framework for Dynamic Resource Allocation in Multibeam Satellite Systems</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>22</volume><issue>8</issue><spage>1612</spage><epage>1615</epage><pages>1612-1615</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Dynamic resource allocation (DRA) is the key technology to improve the network performance in resource-limited multibeam satellite (MBS) systems. The aim is to find a policy that maximizes the expected long-term resource utilization. Existing iterative metaheuristics DRA optimization algorithms are not practical due to the high computational complexity. To solve the problem of unknown dynamics and prohibitive computation, a deep reinforcement learning-based framework (DRLF) is proposed for DRA problems in MBS systems. A novel image-like tensor reformulation on the system environments is adopted to extract traffic spatial and temporal features. A use case of dynamic channel allocation in DRLF is simulated and shows the effectiveness of the proposed DRLF in time-varying scenarios.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2018.2844243</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-5338-5464</orcidid><orcidid>https://orcid.org/0000-0003-0221-8102</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2018-08, Vol.22 (8), p.1612-1615
issn 1089-7798
1558-2558
language eng
recordid cdi_ieee_primary_8372935
source IEEE Electronic Library (IEL)
subjects Computer simulation
deep reinforcement learning (DRL)
Dynamic resource allocation (DRA)
Dynamic scheduling
Feature extraction
Heuristic algorithms
Iterative methods
multibeam satellite (MBS)
Optimization
Quality of service
Resource allocation
Resource management
Satellites
state reformulation
Tensile stress
title A Deep Reinforcement Learning-Based Framework for Dynamic Resource Allocation in Multibeam Satellite Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A47%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Deep%20Reinforcement%20Learning-Based%20Framework%20for%20Dynamic%20Resource%20Allocation%20in%20Multibeam%20Satellite%20Systems&rft.jtitle=IEEE%20communications%20letters&rft.au=Hu,%20Xin&rft.date=2018-08-01&rft.volume=22&rft.issue=8&rft.spage=1612&rft.epage=1615&rft.pages=1612-1615&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2018.2844243&rft_dat=%3Cproquest_RIE%3E2117130690%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117130690&rft_id=info:pmid/&rft_ieee_id=8372935&rfr_iscdi=true