A Deep Reinforcement Learning-Based Framework for Dynamic Resource Allocation in Multibeam Satellite Systems

Dynamic resource allocation (DRA) is the key technology to improve the network performance in resource-limited multibeam satellite (MBS) systems. The aim is to find a policy that maximizes the expected long-term resource utilization. Existing iterative metaheuristics DRA optimization algorithms are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2018-08, Vol.22 (8), p.1612-1615
Hauptverfasser: Hu, Xin, Liu, Shuaijun, Chen, Rong, Wang, Weidong, Wang, Chunting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dynamic resource allocation (DRA) is the key technology to improve the network performance in resource-limited multibeam satellite (MBS) systems. The aim is to find a policy that maximizes the expected long-term resource utilization. Existing iterative metaheuristics DRA optimization algorithms are not practical due to the high computational complexity. To solve the problem of unknown dynamics and prohibitive computation, a deep reinforcement learning-based framework (DRLF) is proposed for DRA problems in MBS systems. A novel image-like tensor reformulation on the system environments is adopted to extract traffic spatial and temporal features. A use case of dynamic channel allocation in DRLF is simulated and shows the effectiveness of the proposed DRLF in time-varying scenarios.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2018.2844243