A Mutual Information Based Adaptive Windowing of Informative EEG for Emotion Recognition
Emotion recognition using brain wave signals involves using high dimensional electroencephalogram (EEG) data. In this paper, a window selection method based on mutual information is introduced to select an appropriate signal window to reduce the length of the signals. The motivation of the windowing...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on affective computing 2020-10, Vol.11 (4), p.722-735 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Emotion recognition using brain wave signals involves using high dimensional electroencephalogram (EEG) data. In this paper, a window selection method based on mutual information is introduced to select an appropriate signal window to reduce the length of the signals. The motivation of the windowing method comes from EEG emotion recognition being computationally costly and the data having low signal-to-noise ratio. The aim of the windowing method is to find a reduced signal where the emotions are strongest. In this paper, it is suggested, that using only the signal section which best describes emotions improves the classification of emotions. This is achieved by iteratively comparing different-length EEG signals at different time locations using the mutual information between the reduced signal and emotion labels as criterion. The reduced signal with the highest mutual information is used for extracting the features for emotion classification. In addition, a viable framework for emotion recognition is introduced. Experimental results on publicly available datasets, DEAP and MAHNOB-HCI, show significant improvement in emotion recognition accuracy. |
---|---|
ISSN: | 1949-3045 1949-3045 |
DOI: | 10.1109/TAFFC.2018.2840973 |