Finding Small-Bowel Lesions: Challenges in Endoscopy-Image-Based Learning Systems
Capsule endoscopy identifies damaged areas in a patient's small intestine but often outputs poor-quality images or misses lesions, leading to either misdiagnosis or repetition of the lengthy procedure. The authors propose applying deep-learning models to automatically process the captured image...
Gespeichert in:
Veröffentlicht in: | Computer (Long Beach, Calif.) Calif.), 2018-05, Vol.51 (5), p.68-76 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Capsule endoscopy identifies damaged areas in a patient's small intestine but often outputs poor-quality images or misses lesions, leading to either misdiagnosis or repetition of the lengthy procedure. The authors propose applying deep-learning models to automatically process the captured images and identify lesions in real time, enabling the capsule to take additional images of a specific location, adjust its focus level, or improve image quality. The authors also describe the technical challenges in realizing a viable automated capsule-endoscopy system. |
---|---|
ISSN: | 0018-9162 1558-0814 |
DOI: | 10.1109/MC.2018.2381116 |