Finding Small-Bowel Lesions: Challenges in Endoscopy-Image-Based Learning Systems

Capsule endoscopy identifies damaged areas in a patient's small intestine but often outputs poor-quality images or misses lesions, leading to either misdiagnosis or repetition of the lengthy procedure. The authors propose applying deep-learning models to automatically process the captured image...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer (Long Beach, Calif.) Calif.), 2018-05, Vol.51 (5), p.68-76
Hauptverfasser: Ahn, Jungmo, Nguyen Loc, Huynh, Krishna Balan, Rajesh, Lee, Youngki, Ko, JeongGil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Capsule endoscopy identifies damaged areas in a patient's small intestine but often outputs poor-quality images or misses lesions, leading to either misdiagnosis or repetition of the lengthy procedure. The authors propose applying deep-learning models to automatically process the captured images and identify lesions in real time, enabling the capsule to take additional images of a specific location, adjust its focus level, or improve image quality. The authors also describe the technical challenges in realizing a viable automated capsule-endoscopy system.
ISSN:0018-9162
1558-0814
DOI:10.1109/MC.2018.2381116