Exponential Error Rates of SDP for Block Models: Beyond Grothendieck's Inequality

In this paper, we consider the cluster estimation problem under the stochastic block model. We show that the semidefinite programming (SDP) formulation for this problem achieves an error rate that decays exponentially in the signal-to-noise ratio. The error bound implies weak recovery in the sparse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2019-01, Vol.65 (1), p.551-571
Hauptverfasser: Fei, Yingjie, Chen, Yudong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the cluster estimation problem under the stochastic block model. We show that the semidefinite programming (SDP) formulation for this problem achieves an error rate that decays exponentially in the signal-to-noise ratio. The error bound implies weak recovery in the sparse graph regime with bounded expected degrees as well as exact recovery in the dense regime. An immediate corollary of our results yields error bounds under the censored block model. Moreover, these error bounds are robust, continuing to hold under heterogeneous edge probabilities and a form of the so-called monotone attack. Significantly, this error rate is achieved by the SDP solution itself without any further pre- or post-processing and improves upon existing polynomially decaying error bounds proved using the Grothendieck's inequality. Our analysis builds on two key ingredients: 1) showing that the graph has a well-behaved spectrum, even in the sparse regime, after discounting an exponentially small number of edges and 2) an order-statistics argument that governs the final error rate. Both arguments highlight the implicit regularization effect of the SDP formulation.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2018.2839677