Fine-Grained Fully Parallel Power Flow Calculation by Incorporating BBDF Method Into a Multistep NR Algorithm
In recognizing urgent needs in fast calculation of AC power flow (PF) problems, PF computation has been explored under different parallel computing platforms. Specifically, a block-bordered-diagonal form (BBDF) method has been widely studied to permute linear equations in PF calculations into a BBDF...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2018-11, Vol.33 (6), p.7204-7214 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recognizing urgent needs in fast calculation of AC power flow (PF) problems, PF computation has been explored under different parallel computing platforms. Specifically, a block-bordered-diagonal form (BBDF) method has been widely studied to permute linear equations in PF calculations into a BBDF form for facilitating parallel computation. However, determining an optimal network segmentation scheme that leads to the best speedup ratio of BBDF-based parallel PF is challenging. As a first contribution, this paper proposes a node-tearing-based approach to determine the optimal network segmentation scheme, which leverages sizes of subnetworks and the coordination network to achieve the best speedup ratio of BBDF-based parallel PF calculation. In addition, a fine-grained fully parallel PF approach is proposed to further enhance parallel performance, in which all three key steps of the Newton-Raphson based PF calculation are implemented in parallel. Studies illustrate effectiveness of the proposed network segmentation method and the fully parallel PF approach. |
---|---|
ISSN: | 0885-8950 1558-0679 |
DOI: | 10.1109/TPWRS.2018.2834734 |