High-Efficiency Bridgeless Single-Power-Conversion Battery Charger for Light Electric Vehicles
Charging batteries of light electric vehicles require chargers with high efficiency and a high power factor. To meet this need, this paper presents a bridgeless single-power-conversion battery charger composed of an isolated step-up ac-dc converter with a series-resonance circuit. The bridgeless con...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2019-01, Vol.66 (1), p.215-222 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Charging batteries of light electric vehicles require chargers with high efficiency and a high power factor. To meet this need, this paper presents a bridgeless single-power-conversion battery charger composed of an isolated step-up ac-dc converter with a series-resonance circuit. The bridgeless configuration reduces the conduction losses associated with the input diode rectifier, and the series-resonance circuit reduces the reverse-recovery losses of the output diodes by providing zero-current switching. In addition, direct and series-resonance current injections enable bidirectional core excitation by the transformer, thereby allowing high-power capability. The control algorithm derived from feedback linearization is also developed, which allows the proposed charger to correct the power factor and regulate the output power in a single-stage power conversion. This simple circuit structure leads to high efficiency and a high power factor. The theoretical concepts of the proposed charger are verified experimentally using a 1.7-kW prototype. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2018.2826458 |