Using Bayesian Networks for Probabilistic Identification of Zero-Day Attack Paths
Enforcing a variety of security measures (such as intrusion detection systems, and so on) can provide a certain level of protection to computer networks. However, such security practices often fall short in face of zero-day attacks. Due to the information asymmetry between attackers and defenders, d...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information forensics and security 2018-10, Vol.13 (10), p.2506-2521 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Enforcing a variety of security measures (such as intrusion detection systems, and so on) can provide a certain level of protection to computer networks. However, such security practices often fall short in face of zero-day attacks. Due to the information asymmetry between attackers and defenders, detecting zero-day attacks remains a challenge. Instead of targeting individual zero-day exploits, revealing them on an attack path is a substantially more feasible strategy. Such attack paths that go through one or more zero-day exploits are called zero-day attack paths. In this paper, we propose a probabilistic approach and implement a prototype system ZePro for zero-day attack path identification. In our approach, a zero-day attack path is essentially a graph. To capture the zero-day attack, a dependency graph named object instance graph is first built as a supergraph by analyzing system calls. To further reveal the zero-day attack paths hidden in the supergraph, our system builds a Bayesian network based upon the instance graph. By taking intrusion evidence as input, the Bayesian network is able to compute the probabilities of object instances being infected. Connecting the high-probability-instances through dependency relations forms a path, which is the zero-day attack path. The experiment results demonstrate the effectiveness of ZePro for zero-day attack path identification. |
---|---|
ISSN: | 1556-6013 1556-6021 |
DOI: | 10.1109/TIFS.2018.2821095 |