Distributed Strategy for Optimal Dispatch of Unbalanced Three-Phase Islanded Microgrids

This paper presents a distributed strategy for the optimal dispatch of islanded microgrids, modeled as unbalanced three-phase electrical distribution systems. To set the dispatch of the distributed generation (DG) units, an optimal generation problem is stated and solved distributively based on prim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2019-05, Vol.10 (3), p.3210-3225
Hauptverfasser: Vergara, Pedro P., Rey, Juan M., Shaker, Hamid R., Guerrero, Josep M., Jorgensen, Bo Norregaard, da Silva, Luiz C. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a distributed strategy for the optimal dispatch of islanded microgrids, modeled as unbalanced three-phase electrical distribution systems. To set the dispatch of the distributed generation (DG) units, an optimal generation problem is stated and solved distributively based on primal-dual constrained decomposition and a first-order consensus protocol, where units can communicate only with their neighbors. Thus, convergence is guaranteed under the common convexity assumptions. The islanded microgrid operates with the standard hierarchical control scheme, where two control modes are considered for the DG units: a voltage control mode, with an active droop control loop, and a power control mode, which allows setting the output power in advance. To assess the effectiveness and flexibility of the proposed approach, simulations were performed in a 25-bus unbalanced three-phase microgrid. According to the obtained results, the proposed strategy achieves a lower cost solution when compared with a centralized approach based on a static droop framework, with a considerable reduction on the communication system complexity. Additionally, it corrects the mismatch between generation and consumption even during the execution of the optimization process, responding to changes in the load consumption, renewable generation, and unexpected faults in units.
ISSN:1949-3053
1949-3061
DOI:10.1109/TSG.2018.2820748