Gear Fault Diagnosis Based on Dual Parameter Optimized Resonance-Based Sparse Signal Decomposition of Motor Current

Motor current signature analysis (MCSA) provides a nondestructive and remote approach for a gear fault diagnosis. However, in addition to the fault-related components, motor current in the faulty gear system also contains the eccentricity-related components and gear meshing-related components, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2018-07, Vol.54 (4), p.3782-3792
Hauptverfasser: Chai, Na, Yang, Ming, Ni, Qinan, Xu, Dianguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3792
container_issue 4
container_start_page 3782
container_title IEEE transactions on industry applications
container_volume 54
creator Chai, Na
Yang, Ming
Ni, Qinan
Xu, Dianguo
description Motor current signature analysis (MCSA) provides a nondestructive and remote approach for a gear fault diagnosis. However, in addition to the fault-related components, motor current in the faulty gear system also contains the eccentricity-related components and gear meshing-related components, which contaminate the fault features and increase the difficulty of fault diagnosis. To extract fault features from these interferences, this paper proposes the dual parameters optimized resonance-based sparse signal decomposition (RSSD) method, which can decompose a complex signal into a high- and low-resonance component with two sets of overcomplete wavelet bases. After the decomposition, the fault-related components, which have short duration, will exist in low-resonance component. The novelty is that the wavelet bases related parameters, Q-factors, and decomposition levels are chosen automatically based on artificial bee colony algorithm to obtain the optimal decomposition results instead of chosen subjectively. Kurtosis of the low-resonance component is employed as optimization index. The proposed method is then verified on the gear fault-diagnosis platform, which consists of two permanent magnet synchronous motors and a pair of gears with transmission ratio of 3:2, and its effectiveness over some existing methods under different operating conditions is also validated.
doi_str_mv 10.1109/TIA.2018.2821099
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8327862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8327862</ieee_id><sourcerecordid>2117060160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e93eea0bb0eb71cd17a5eba29894956f9bfd2c5c15be5683b45e46a5acb57a383</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6n7kU2yx9raWqhUbD2HSTopW5ps3E0O-uvdEvE0DPO8L8NDyD1nE86ZftqtphPBeDYRmQi7viAjrqWOtEzSSzJiTMtIax1fkxvvj4zxWPF4RPwSwdEF9KeOzg0cGuuNp8_gcU9tQ-c9nOg7OKixQ0c3bWdq8xNuH-htA02J0cBuW3Ae6dYcmpCYY2nrNlR1JpTYir7Zzjo6653DprslVxWcPN79zTH5XLzsZq_RerNczabrqBSadxFqiQisKBgWKS_3PAWFBQid6VirpNJFtRelKrkqUCWZLGKFcQIKykKlIDM5Jo9Db-vsV4--y4-2d-E_nwvOU5YwnrBAsYEqnfXeYZW3ztTgvnPO8rPaPKjNz2rzP7Uh8jBEDCL-45kUaZYI-QsY_HYe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117060160</pqid></control><display><type>article</type><title>Gear Fault Diagnosis Based on Dual Parameter Optimized Resonance-Based Sparse Signal Decomposition of Motor Current</title><source>IEEE Electronic Library (IEL)</source><creator>Chai, Na ; Yang, Ming ; Ni, Qinan ; Xu, Dianguo</creator><creatorcontrib>Chai, Na ; Yang, Ming ; Ni, Qinan ; Xu, Dianguo</creatorcontrib><description>Motor current signature analysis (MCSA) provides a nondestructive and remote approach for a gear fault diagnosis. However, in addition to the fault-related components, motor current in the faulty gear system also contains the eccentricity-related components and gear meshing-related components, which contaminate the fault features and increase the difficulty of fault diagnosis. To extract fault features from these interferences, this paper proposes the dual parameters optimized resonance-based sparse signal decomposition (RSSD) method, which can decompose a complex signal into a high- and low-resonance component with two sets of overcomplete wavelet bases. After the decomposition, the fault-related components, which have short duration, will exist in low-resonance component. The novelty is that the wavelet bases related parameters, Q-factors, and decomposition levels are chosen automatically based on artificial bee colony algorithm to obtain the optimal decomposition results instead of chosen subjectively. Kurtosis of the low-resonance component is employed as optimization index. The proposed method is then verified on the gear fault-diagnosis platform, which consists of two permanent magnet synchronous motors and a pair of gears with transmission ratio of 3:2, and its effectiveness over some existing methods under different operating conditions is also validated.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2018.2821099</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Decomposition ; Decomposition level ; Fault diagnosis ; Feature extraction ; gear fault detection ; Gears ; Kurtosis ; Meshing ; motor current signature analysis (MCSA) ; Nondestructive testing ; parameter optimization ; Parameters ; Permanent magnet motors ; Permanent magnets ; Q-factor ; resonance-based sparse signal decomposition (RSSD) ; Resonant frequency ; Search algorithms ; Signature analysis ; Swarm intelligence ; Synchronous motors ; Torque ; Vibrations ; Wavelet transforms</subject><ispartof>IEEE transactions on industry applications, 2018-07, Vol.54 (4), p.3782-3792</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e93eea0bb0eb71cd17a5eba29894956f9bfd2c5c15be5683b45e46a5acb57a383</citedby><cites>FETCH-LOGICAL-c291t-e93eea0bb0eb71cd17a5eba29894956f9bfd2c5c15be5683b45e46a5acb57a383</cites><orcidid>0000-0002-1594-8625 ; 0000-0002-3522-6048 ; 0000-0003-0462-6046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8327862$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8327862$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chai, Na</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Ni, Qinan</creatorcontrib><creatorcontrib>Xu, Dianguo</creatorcontrib><title>Gear Fault Diagnosis Based on Dual Parameter Optimized Resonance-Based Sparse Signal Decomposition of Motor Current</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Motor current signature analysis (MCSA) provides a nondestructive and remote approach for a gear fault diagnosis. However, in addition to the fault-related components, motor current in the faulty gear system also contains the eccentricity-related components and gear meshing-related components, which contaminate the fault features and increase the difficulty of fault diagnosis. To extract fault features from these interferences, this paper proposes the dual parameters optimized resonance-based sparse signal decomposition (RSSD) method, which can decompose a complex signal into a high- and low-resonance component with two sets of overcomplete wavelet bases. After the decomposition, the fault-related components, which have short duration, will exist in low-resonance component. The novelty is that the wavelet bases related parameters, Q-factors, and decomposition levels are chosen automatically based on artificial bee colony algorithm to obtain the optimal decomposition results instead of chosen subjectively. Kurtosis of the low-resonance component is employed as optimization index. The proposed method is then verified on the gear fault-diagnosis platform, which consists of two permanent magnet synchronous motors and a pair of gears with transmission ratio of 3:2, and its effectiveness over some existing methods under different operating conditions is also validated.</description><subject>Decomposition</subject><subject>Decomposition level</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>gear fault detection</subject><subject>Gears</subject><subject>Kurtosis</subject><subject>Meshing</subject><subject>motor current signature analysis (MCSA)</subject><subject>Nondestructive testing</subject><subject>parameter optimization</subject><subject>Parameters</subject><subject>Permanent magnet motors</subject><subject>Permanent magnets</subject><subject>Q-factor</subject><subject>resonance-based sparse signal decomposition (RSSD)</subject><subject>Resonant frequency</subject><subject>Search algorithms</subject><subject>Signature analysis</subject><subject>Swarm intelligence</subject><subject>Synchronous motors</subject><subject>Torque</subject><subject>Vibrations</subject><subject>Wavelet transforms</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6n7kU2yx9raWqhUbD2HSTopW5ps3E0O-uvdEvE0DPO8L8NDyD1nE86ZftqtphPBeDYRmQi7viAjrqWOtEzSSzJiTMtIax1fkxvvj4zxWPF4RPwSwdEF9KeOzg0cGuuNp8_gcU9tQ-c9nOg7OKixQ0c3bWdq8xNuH-htA02J0cBuW3Ae6dYcmpCYY2nrNlR1JpTYir7Zzjo6653DprslVxWcPN79zTH5XLzsZq_RerNczabrqBSadxFqiQisKBgWKS_3PAWFBQid6VirpNJFtRelKrkqUCWZLGKFcQIKykKlIDM5Jo9Db-vsV4--y4-2d-E_nwvOU5YwnrBAsYEqnfXeYZW3ztTgvnPO8rPaPKjNz2rzP7Uh8jBEDCL-45kUaZYI-QsY_HYe</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Chai, Na</creator><creator>Yang, Ming</creator><creator>Ni, Qinan</creator><creator>Xu, Dianguo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1594-8625</orcidid><orcidid>https://orcid.org/0000-0002-3522-6048</orcidid><orcidid>https://orcid.org/0000-0003-0462-6046</orcidid></search><sort><creationdate>201807</creationdate><title>Gear Fault Diagnosis Based on Dual Parameter Optimized Resonance-Based Sparse Signal Decomposition of Motor Current</title><author>Chai, Na ; Yang, Ming ; Ni, Qinan ; Xu, Dianguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e93eea0bb0eb71cd17a5eba29894956f9bfd2c5c15be5683b45e46a5acb57a383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Decomposition</topic><topic>Decomposition level</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>gear fault detection</topic><topic>Gears</topic><topic>Kurtosis</topic><topic>Meshing</topic><topic>motor current signature analysis (MCSA)</topic><topic>Nondestructive testing</topic><topic>parameter optimization</topic><topic>Parameters</topic><topic>Permanent magnet motors</topic><topic>Permanent magnets</topic><topic>Q-factor</topic><topic>resonance-based sparse signal decomposition (RSSD)</topic><topic>Resonant frequency</topic><topic>Search algorithms</topic><topic>Signature analysis</topic><topic>Swarm intelligence</topic><topic>Synchronous motors</topic><topic>Torque</topic><topic>Vibrations</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chai, Na</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Ni, Qinan</creatorcontrib><creatorcontrib>Xu, Dianguo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chai, Na</au><au>Yang, Ming</au><au>Ni, Qinan</au><au>Xu, Dianguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gear Fault Diagnosis Based on Dual Parameter Optimized Resonance-Based Sparse Signal Decomposition of Motor Current</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2018-07</date><risdate>2018</risdate><volume>54</volume><issue>4</issue><spage>3782</spage><epage>3792</epage><pages>3782-3792</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Motor current signature analysis (MCSA) provides a nondestructive and remote approach for a gear fault diagnosis. However, in addition to the fault-related components, motor current in the faulty gear system also contains the eccentricity-related components and gear meshing-related components, which contaminate the fault features and increase the difficulty of fault diagnosis. To extract fault features from these interferences, this paper proposes the dual parameters optimized resonance-based sparse signal decomposition (RSSD) method, which can decompose a complex signal into a high- and low-resonance component with two sets of overcomplete wavelet bases. After the decomposition, the fault-related components, which have short duration, will exist in low-resonance component. The novelty is that the wavelet bases related parameters, Q-factors, and decomposition levels are chosen automatically based on artificial bee colony algorithm to obtain the optimal decomposition results instead of chosen subjectively. Kurtosis of the low-resonance component is employed as optimization index. The proposed method is then verified on the gear fault-diagnosis platform, which consists of two permanent magnet synchronous motors and a pair of gears with transmission ratio of 3:2, and its effectiveness over some existing methods under different operating conditions is also validated.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2018.2821099</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1594-8625</orcidid><orcidid>https://orcid.org/0000-0002-3522-6048</orcidid><orcidid>https://orcid.org/0000-0003-0462-6046</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0093-9994
ispartof IEEE transactions on industry applications, 2018-07, Vol.54 (4), p.3782-3792
issn 0093-9994
1939-9367
language eng
recordid cdi_ieee_primary_8327862
source IEEE Electronic Library (IEL)
subjects Decomposition
Decomposition level
Fault diagnosis
Feature extraction
gear fault detection
Gears
Kurtosis
Meshing
motor current signature analysis (MCSA)
Nondestructive testing
parameter optimization
Parameters
Permanent magnet motors
Permanent magnets
Q-factor
resonance-based sparse signal decomposition (RSSD)
Resonant frequency
Search algorithms
Signature analysis
Swarm intelligence
Synchronous motors
Torque
Vibrations
Wavelet transforms
title Gear Fault Diagnosis Based on Dual Parameter Optimized Resonance-Based Sparse Signal Decomposition of Motor Current
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gear%20Fault%20Diagnosis%20Based%20on%20Dual%20Parameter%20Optimized%20Resonance-Based%20Sparse%20Signal%20Decomposition%20of%20Motor%20Current&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Chai,%20Na&rft.date=2018-07&rft.volume=54&rft.issue=4&rft.spage=3782&rft.epage=3792&rft.pages=3782-3792&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2018.2821099&rft_dat=%3Cproquest_RIE%3E2117060160%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117060160&rft_id=info:pmid/&rft_ieee_id=8327862&rfr_iscdi=true