Gear Fault Diagnosis Based on Dual Parameter Optimized Resonance-Based Sparse Signal Decomposition of Motor Current
Motor current signature analysis (MCSA) provides a nondestructive and remote approach for a gear fault diagnosis. However, in addition to the fault-related components, motor current in the faulty gear system also contains the eccentricity-related components and gear meshing-related components, which...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2018-07, Vol.54 (4), p.3782-3792 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3792 |
---|---|
container_issue | 4 |
container_start_page | 3782 |
container_title | IEEE transactions on industry applications |
container_volume | 54 |
creator | Chai, Na Yang, Ming Ni, Qinan Xu, Dianguo |
description | Motor current signature analysis (MCSA) provides a nondestructive and remote approach for a gear fault diagnosis. However, in addition to the fault-related components, motor current in the faulty gear system also contains the eccentricity-related components and gear meshing-related components, which contaminate the fault features and increase the difficulty of fault diagnosis. To extract fault features from these interferences, this paper proposes the dual parameters optimized resonance-based sparse signal decomposition (RSSD) method, which can decompose a complex signal into a high- and low-resonance component with two sets of overcomplete wavelet bases. After the decomposition, the fault-related components, which have short duration, will exist in low-resonance component. The novelty is that the wavelet bases related parameters, Q-factors, and decomposition levels are chosen automatically based on artificial bee colony algorithm to obtain the optimal decomposition results instead of chosen subjectively. Kurtosis of the low-resonance component is employed as optimization index. The proposed method is then verified on the gear fault-diagnosis platform, which consists of two permanent magnet synchronous motors and a pair of gears with transmission ratio of 3:2, and its effectiveness over some existing methods under different operating conditions is also validated. |
doi_str_mv | 10.1109/TIA.2018.2821099 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8327862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8327862</ieee_id><sourcerecordid>2117060160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e93eea0bb0eb71cd17a5eba29894956f9bfd2c5c15be5683b45e46a5acb57a383</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6n7kU2yx9raWqhUbD2HSTopW5ps3E0O-uvdEvE0DPO8L8NDyD1nE86ZftqtphPBeDYRmQi7viAjrqWOtEzSSzJiTMtIax1fkxvvj4zxWPF4RPwSwdEF9KeOzg0cGuuNp8_gcU9tQ-c9nOg7OKixQ0c3bWdq8xNuH-htA02J0cBuW3Ae6dYcmpCYY2nrNlR1JpTYir7Zzjo6653DprslVxWcPN79zTH5XLzsZq_RerNczabrqBSadxFqiQisKBgWKS_3PAWFBQid6VirpNJFtRelKrkqUCWZLGKFcQIKykKlIDM5Jo9Db-vsV4--y4-2d-E_nwvOU5YwnrBAsYEqnfXeYZW3ztTgvnPO8rPaPKjNz2rzP7Uh8jBEDCL-45kUaZYI-QsY_HYe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117060160</pqid></control><display><type>article</type><title>Gear Fault Diagnosis Based on Dual Parameter Optimized Resonance-Based Sparse Signal Decomposition of Motor Current</title><source>IEEE Electronic Library (IEL)</source><creator>Chai, Na ; Yang, Ming ; Ni, Qinan ; Xu, Dianguo</creator><creatorcontrib>Chai, Na ; Yang, Ming ; Ni, Qinan ; Xu, Dianguo</creatorcontrib><description>Motor current signature analysis (MCSA) provides a nondestructive and remote approach for a gear fault diagnosis. However, in addition to the fault-related components, motor current in the faulty gear system also contains the eccentricity-related components and gear meshing-related components, which contaminate the fault features and increase the difficulty of fault diagnosis. To extract fault features from these interferences, this paper proposes the dual parameters optimized resonance-based sparse signal decomposition (RSSD) method, which can decompose a complex signal into a high- and low-resonance component with two sets of overcomplete wavelet bases. After the decomposition, the fault-related components, which have short duration, will exist in low-resonance component. The novelty is that the wavelet bases related parameters, Q-factors, and decomposition levels are chosen automatically based on artificial bee colony algorithm to obtain the optimal decomposition results instead of chosen subjectively. Kurtosis of the low-resonance component is employed as optimization index. The proposed method is then verified on the gear fault-diagnosis platform, which consists of two permanent magnet synchronous motors and a pair of gears with transmission ratio of 3:2, and its effectiveness over some existing methods under different operating conditions is also validated.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2018.2821099</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Decomposition ; Decomposition level ; Fault diagnosis ; Feature extraction ; gear fault detection ; Gears ; Kurtosis ; Meshing ; motor current signature analysis (MCSA) ; Nondestructive testing ; parameter optimization ; Parameters ; Permanent magnet motors ; Permanent magnets ; Q-factor ; resonance-based sparse signal decomposition (RSSD) ; Resonant frequency ; Search algorithms ; Signature analysis ; Swarm intelligence ; Synchronous motors ; Torque ; Vibrations ; Wavelet transforms</subject><ispartof>IEEE transactions on industry applications, 2018-07, Vol.54 (4), p.3782-3792</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e93eea0bb0eb71cd17a5eba29894956f9bfd2c5c15be5683b45e46a5acb57a383</citedby><cites>FETCH-LOGICAL-c291t-e93eea0bb0eb71cd17a5eba29894956f9bfd2c5c15be5683b45e46a5acb57a383</cites><orcidid>0000-0002-1594-8625 ; 0000-0002-3522-6048 ; 0000-0003-0462-6046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8327862$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8327862$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chai, Na</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Ni, Qinan</creatorcontrib><creatorcontrib>Xu, Dianguo</creatorcontrib><title>Gear Fault Diagnosis Based on Dual Parameter Optimized Resonance-Based Sparse Signal Decomposition of Motor Current</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Motor current signature analysis (MCSA) provides a nondestructive and remote approach for a gear fault diagnosis. However, in addition to the fault-related components, motor current in the faulty gear system also contains the eccentricity-related components and gear meshing-related components, which contaminate the fault features and increase the difficulty of fault diagnosis. To extract fault features from these interferences, this paper proposes the dual parameters optimized resonance-based sparse signal decomposition (RSSD) method, which can decompose a complex signal into a high- and low-resonance component with two sets of overcomplete wavelet bases. After the decomposition, the fault-related components, which have short duration, will exist in low-resonance component. The novelty is that the wavelet bases related parameters, Q-factors, and decomposition levels are chosen automatically based on artificial bee colony algorithm to obtain the optimal decomposition results instead of chosen subjectively. Kurtosis of the low-resonance component is employed as optimization index. The proposed method is then verified on the gear fault-diagnosis platform, which consists of two permanent magnet synchronous motors and a pair of gears with transmission ratio of 3:2, and its effectiveness over some existing methods under different operating conditions is also validated.</description><subject>Decomposition</subject><subject>Decomposition level</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>gear fault detection</subject><subject>Gears</subject><subject>Kurtosis</subject><subject>Meshing</subject><subject>motor current signature analysis (MCSA)</subject><subject>Nondestructive testing</subject><subject>parameter optimization</subject><subject>Parameters</subject><subject>Permanent magnet motors</subject><subject>Permanent magnets</subject><subject>Q-factor</subject><subject>resonance-based sparse signal decomposition (RSSD)</subject><subject>Resonant frequency</subject><subject>Search algorithms</subject><subject>Signature analysis</subject><subject>Swarm intelligence</subject><subject>Synchronous motors</subject><subject>Torque</subject><subject>Vibrations</subject><subject>Wavelet transforms</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpcFz6n7kU2yx9raWqhUbD2HSTopW5ps3E0O-uvdEvE0DPO8L8NDyD1nE86ZftqtphPBeDYRmQi7viAjrqWOtEzSSzJiTMtIax1fkxvvj4zxWPF4RPwSwdEF9KeOzg0cGuuNp8_gcU9tQ-c9nOg7OKixQ0c3bWdq8xNuH-htA02J0cBuW3Ae6dYcmpCYY2nrNlR1JpTYir7Zzjo6653DprslVxWcPN79zTH5XLzsZq_RerNczabrqBSadxFqiQisKBgWKS_3PAWFBQid6VirpNJFtRelKrkqUCWZLGKFcQIKykKlIDM5Jo9Db-vsV4--y4-2d-E_nwvOU5YwnrBAsYEqnfXeYZW3ztTgvnPO8rPaPKjNz2rzP7Uh8jBEDCL-45kUaZYI-QsY_HYe</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Chai, Na</creator><creator>Yang, Ming</creator><creator>Ni, Qinan</creator><creator>Xu, Dianguo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1594-8625</orcidid><orcidid>https://orcid.org/0000-0002-3522-6048</orcidid><orcidid>https://orcid.org/0000-0003-0462-6046</orcidid></search><sort><creationdate>201807</creationdate><title>Gear Fault Diagnosis Based on Dual Parameter Optimized Resonance-Based Sparse Signal Decomposition of Motor Current</title><author>Chai, Na ; Yang, Ming ; Ni, Qinan ; Xu, Dianguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e93eea0bb0eb71cd17a5eba29894956f9bfd2c5c15be5683b45e46a5acb57a383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Decomposition</topic><topic>Decomposition level</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>gear fault detection</topic><topic>Gears</topic><topic>Kurtosis</topic><topic>Meshing</topic><topic>motor current signature analysis (MCSA)</topic><topic>Nondestructive testing</topic><topic>parameter optimization</topic><topic>Parameters</topic><topic>Permanent magnet motors</topic><topic>Permanent magnets</topic><topic>Q-factor</topic><topic>resonance-based sparse signal decomposition (RSSD)</topic><topic>Resonant frequency</topic><topic>Search algorithms</topic><topic>Signature analysis</topic><topic>Swarm intelligence</topic><topic>Synchronous motors</topic><topic>Torque</topic><topic>Vibrations</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chai, Na</creatorcontrib><creatorcontrib>Yang, Ming</creatorcontrib><creatorcontrib>Ni, Qinan</creatorcontrib><creatorcontrib>Xu, Dianguo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chai, Na</au><au>Yang, Ming</au><au>Ni, Qinan</au><au>Xu, Dianguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gear Fault Diagnosis Based on Dual Parameter Optimized Resonance-Based Sparse Signal Decomposition of Motor Current</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2018-07</date><risdate>2018</risdate><volume>54</volume><issue>4</issue><spage>3782</spage><epage>3792</epage><pages>3782-3792</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Motor current signature analysis (MCSA) provides a nondestructive and remote approach for a gear fault diagnosis. However, in addition to the fault-related components, motor current in the faulty gear system also contains the eccentricity-related components and gear meshing-related components, which contaminate the fault features and increase the difficulty of fault diagnosis. To extract fault features from these interferences, this paper proposes the dual parameters optimized resonance-based sparse signal decomposition (RSSD) method, which can decompose a complex signal into a high- and low-resonance component with two sets of overcomplete wavelet bases. After the decomposition, the fault-related components, which have short duration, will exist in low-resonance component. The novelty is that the wavelet bases related parameters, Q-factors, and decomposition levels are chosen automatically based on artificial bee colony algorithm to obtain the optimal decomposition results instead of chosen subjectively. Kurtosis of the low-resonance component is employed as optimization index. The proposed method is then verified on the gear fault-diagnosis platform, which consists of two permanent magnet synchronous motors and a pair of gears with transmission ratio of 3:2, and its effectiveness over some existing methods under different operating conditions is also validated.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIA.2018.2821099</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1594-8625</orcidid><orcidid>https://orcid.org/0000-0002-3522-6048</orcidid><orcidid>https://orcid.org/0000-0003-0462-6046</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2018-07, Vol.54 (4), p.3782-3792 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_ieee_primary_8327862 |
source | IEEE Electronic Library (IEL) |
subjects | Decomposition Decomposition level Fault diagnosis Feature extraction gear fault detection Gears Kurtosis Meshing motor current signature analysis (MCSA) Nondestructive testing parameter optimization Parameters Permanent magnet motors Permanent magnets Q-factor resonance-based sparse signal decomposition (RSSD) Resonant frequency Search algorithms Signature analysis Swarm intelligence Synchronous motors Torque Vibrations Wavelet transforms |
title | Gear Fault Diagnosis Based on Dual Parameter Optimized Resonance-Based Sparse Signal Decomposition of Motor Current |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gear%20Fault%20Diagnosis%20Based%20on%20Dual%20Parameter%20Optimized%20Resonance-Based%20Sparse%20Signal%20Decomposition%20of%20Motor%20Current&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Chai,%20Na&rft.date=2018-07&rft.volume=54&rft.issue=4&rft.spage=3782&rft.epage=3792&rft.pages=3782-3792&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2018.2821099&rft_dat=%3Cproquest_RIE%3E2117060160%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117060160&rft_id=info:pmid/&rft_ieee_id=8327862&rfr_iscdi=true |