Gear Fault Diagnosis Based on Dual Parameter Optimized Resonance-Based Sparse Signal Decomposition of Motor Current

Motor current signature analysis (MCSA) provides a nondestructive and remote approach for a gear fault diagnosis. However, in addition to the fault-related components, motor current in the faulty gear system also contains the eccentricity-related components and gear meshing-related components, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2018-07, Vol.54 (4), p.3782-3792
Hauptverfasser: Chai, Na, Yang, Ming, Ni, Qinan, Xu, Dianguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motor current signature analysis (MCSA) provides a nondestructive and remote approach for a gear fault diagnosis. However, in addition to the fault-related components, motor current in the faulty gear system also contains the eccentricity-related components and gear meshing-related components, which contaminate the fault features and increase the difficulty of fault diagnosis. To extract fault features from these interferences, this paper proposes the dual parameters optimized resonance-based sparse signal decomposition (RSSD) method, which can decompose a complex signal into a high- and low-resonance component with two sets of overcomplete wavelet bases. After the decomposition, the fault-related components, which have short duration, will exist in low-resonance component. The novelty is that the wavelet bases related parameters, Q-factors, and decomposition levels are chosen automatically based on artificial bee colony algorithm to obtain the optimal decomposition results instead of chosen subjectively. Kurtosis of the low-resonance component is employed as optimization index. The proposed method is then verified on the gear fault-diagnosis platform, which consists of two permanent magnet synchronous motors and a pair of gears with transmission ratio of 3:2, and its effectiveness over some existing methods under different operating conditions is also validated.
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.2018.2821099