Training CNNs for 3-D Sign Language Recognition With Color Texture Coded Joint Angular Displacement Maps

Convolutional neural networks (CNNs) can be remarkably effective for recognizing two-dimensional and three-dimensional (3-D) actions. To further explore the potential of CNNs, we applied them in the recognition of 3-D motion-captured sign language (SL). The sign's 3-D spatio-temporal informatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2018-05, Vol.25 (5), p.645-649
Hauptverfasser: Kumar, E. Kiran, Kishore, P. V. V., Sastry, A. S. C. S., Kumar, M. Teja Kiran, Kumar, D. Anil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Convolutional neural networks (CNNs) can be remarkably effective for recognizing two-dimensional and three-dimensional (3-D) actions. To further explore the potential of CNNs, we applied them in the recognition of 3-D motion-captured sign language (SL). The sign's 3-D spatio-temporal information of each sign was interpreted using joint angular displacement maps (JADMs), which encode the sign as a color texture image; JADMs were calculated for all joint pairs. Multiple CNN layers then capitalized on the differences between these images and identify discriminative spatio-temporal features. We then compared the performance of our proposed model against those of the state-of-the-art baseline models by using our own 3-D SL dataset and two other benchmark action datasets, namely, HDM05 and CMU.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2018.2817179