Higher Order Convergent Fast Nonlinear Fourier Transform

It is demonstrated in this letter that linear multistep methods for integrating ordinary differential equations can be used to develop a family of fast forward scattering algorithms with higher orders of convergence. Excluding the cost of computing the discrete eigenvalues, the nonlinear Fourier tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics technology letters 2018-04, Vol.30 (8), p.700-703
1. Verfasser: Vaibhav, Vishal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 703
container_issue 8
container_start_page 700
container_title IEEE photonics technology letters
container_volume 30
creator Vaibhav, Vishal
description It is demonstrated in this letter that linear multistep methods for integrating ordinary differential equations can be used to develop a family of fast forward scattering algorithms with higher orders of convergence. Excluding the cost of computing the discrete eigenvalues, the nonlinear Fourier transform (NFT) algorithm thus obtained has a complexity of \mathop {O}(KN+C_{p}N\log ^{2}N) such that the error vanishes as \mathop {O}(N^{-p}) where p\in \{1,2,3,4\} and K is the number of eigenvalues. Such an algorithm can be potentially useful for the recently proposed NFT-based modulation methodology for optical fiber communication. The exposition considers the particular case of the backward differentiation formula ( C_{p}=p^{3} ) and the implicit Adams method ( C_{p}=(p-1)^{3},\,p>1 ) of which the latter proves to be the most accurate family of methods for fast NFT.
doi_str_mv 10.1109/LPT.2018.2812808
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8307084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8307084</ieee_id><sourcerecordid>10_1109_LPT_2018_2812808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-59d539a39d11e6b916309c6bb3c7f18d98c52528dbe3ca5aaa1e74c56e1cab183</originalsourceid><addsrcrecordid>eNo9j09Lw0AUxBdRsFbvgpd8gdT39k-ye5RgbCFYD_G8bDYvNdImshsFv70pLV5m5jAz8GPsHmGFCOaxeqtXHFCvuEauQV-wBRqJKWAuL-cMc0YU6prdxPgJgFIJuWB63e8-KCTb0M5ajMMPhR0NU1K6OCWv47DvB3IhKcfv0M-NOrghdmM43LKrzu0j3Z19yd7L57pYp9X2ZVM8VannmZhSZVoljBOmRaSsMZgJMD5rGuHzDnVrtFdccd02JLxTzjmkXHqVEXrXoBZLBqdfH8YYA3X2K_QHF34tgj2S25ncHsntmXyePJwmPRH917WAHLQUf2NGVIU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Higher Order Convergent Fast Nonlinear Fourier Transform</title><source>IEEE Electronic Library (IEL)</source><creator>Vaibhav, Vishal</creator><creatorcontrib>Vaibhav, Vishal</creatorcontrib><description><![CDATA[It is demonstrated in this letter that linear multistep methods for integrating ordinary differential equations can be used to develop a family of fast forward scattering algorithms with higher orders of convergence. Excluding the cost of computing the discrete eigenvalues, the nonlinear Fourier transform (NFT) algorithm thus obtained has a complexity of <inline-formula> <tex-math notation="LaTeX">\mathop {O}(KN+C_{p}N\log ^{2}N) </tex-math></inline-formula> such that the error vanishes as <inline-formula> <tex-math notation="LaTeX">\mathop {O}(N^{-p}) </tex-math></inline-formula> where <inline-formula> <tex-math notation="LaTeX">p\in \{1,2,3,4\} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> is the number of eigenvalues. Such an algorithm can be potentially useful for the recently proposed NFT-based modulation methodology for optical fiber communication. The exposition considers the particular case of the backward differentiation formula (<inline-formula> <tex-math notation="LaTeX">C_{p}=p^{3} </tex-math></inline-formula>) and the implicit Adams method (<inline-formula> <tex-math notation="LaTeX">C_{p}=(p-1)^{3},\,p>1 </tex-math></inline-formula>) of which the latter proves to be the most accurate family of methods for fast NFT.]]></description><identifier>ISSN: 1041-1135</identifier><identifier>EISSN: 1941-0174</identifier><identifier>DOI: 10.1109/LPT.2018.2812808</identifier><identifier>CODEN: IPTLEL</identifier><language>eng</language><publisher>IEEE</publisher><subject>Complexity theory ; Convergence ; Eigenvalues and eigenfunctions ; Fourier transforms ; Manganese ; Noise measurement ; Nonlinear Fourier transform ; Scattering ; Zakharov–Shabat scattering problem</subject><ispartof>IEEE photonics technology letters, 2018-04, Vol.30 (8), p.700-703</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-59d539a39d11e6b916309c6bb3c7f18d98c52528dbe3ca5aaa1e74c56e1cab183</citedby><cites>FETCH-LOGICAL-c263t-59d539a39d11e6b916309c6bb3c7f18d98c52528dbe3ca5aaa1e74c56e1cab183</cites><orcidid>0000-0002-4800-0590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8307084$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8307084$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vaibhav, Vishal</creatorcontrib><title>Higher Order Convergent Fast Nonlinear Fourier Transform</title><title>IEEE photonics technology letters</title><addtitle>LPT</addtitle><description><![CDATA[It is demonstrated in this letter that linear multistep methods for integrating ordinary differential equations can be used to develop a family of fast forward scattering algorithms with higher orders of convergence. Excluding the cost of computing the discrete eigenvalues, the nonlinear Fourier transform (NFT) algorithm thus obtained has a complexity of <inline-formula> <tex-math notation="LaTeX">\mathop {O}(KN+C_{p}N\log ^{2}N) </tex-math></inline-formula> such that the error vanishes as <inline-formula> <tex-math notation="LaTeX">\mathop {O}(N^{-p}) </tex-math></inline-formula> where <inline-formula> <tex-math notation="LaTeX">p\in \{1,2,3,4\} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> is the number of eigenvalues. Such an algorithm can be potentially useful for the recently proposed NFT-based modulation methodology for optical fiber communication. The exposition considers the particular case of the backward differentiation formula (<inline-formula> <tex-math notation="LaTeX">C_{p}=p^{3} </tex-math></inline-formula>) and the implicit Adams method (<inline-formula> <tex-math notation="LaTeX">C_{p}=(p-1)^{3},\,p>1 </tex-math></inline-formula>) of which the latter proves to be the most accurate family of methods for fast NFT.]]></description><subject>Complexity theory</subject><subject>Convergence</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Fourier transforms</subject><subject>Manganese</subject><subject>Noise measurement</subject><subject>Nonlinear Fourier transform</subject><subject>Scattering</subject><subject>Zakharov–Shabat scattering problem</subject><issn>1041-1135</issn><issn>1941-0174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9j09Lw0AUxBdRsFbvgpd8gdT39k-ye5RgbCFYD_G8bDYvNdImshsFv70pLV5m5jAz8GPsHmGFCOaxeqtXHFCvuEauQV-wBRqJKWAuL-cMc0YU6prdxPgJgFIJuWB63e8-KCTb0M5ajMMPhR0NU1K6OCWv47DvB3IhKcfv0M-NOrghdmM43LKrzu0j3Z19yd7L57pYp9X2ZVM8VannmZhSZVoljBOmRaSsMZgJMD5rGuHzDnVrtFdccd02JLxTzjmkXHqVEXrXoBZLBqdfH8YYA3X2K_QHF34tgj2S25ncHsntmXyePJwmPRH917WAHLQUf2NGVIU</recordid><startdate>20180415</startdate><enddate>20180415</enddate><creator>Vaibhav, Vishal</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4800-0590</orcidid></search><sort><creationdate>20180415</creationdate><title>Higher Order Convergent Fast Nonlinear Fourier Transform</title><author>Vaibhav, Vishal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-59d539a39d11e6b916309c6bb3c7f18d98c52528dbe3ca5aaa1e74c56e1cab183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Complexity theory</topic><topic>Convergence</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Fourier transforms</topic><topic>Manganese</topic><topic>Noise measurement</topic><topic>Nonlinear Fourier transform</topic><topic>Scattering</topic><topic>Zakharov–Shabat scattering problem</topic><toplevel>online_resources</toplevel><creatorcontrib>Vaibhav, Vishal</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE photonics technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vaibhav, Vishal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher Order Convergent Fast Nonlinear Fourier Transform</atitle><jtitle>IEEE photonics technology letters</jtitle><stitle>LPT</stitle><date>2018-04-15</date><risdate>2018</risdate><volume>30</volume><issue>8</issue><spage>700</spage><epage>703</epage><pages>700-703</pages><issn>1041-1135</issn><eissn>1941-0174</eissn><coden>IPTLEL</coden><abstract><![CDATA[It is demonstrated in this letter that linear multistep methods for integrating ordinary differential equations can be used to develop a family of fast forward scattering algorithms with higher orders of convergence. Excluding the cost of computing the discrete eigenvalues, the nonlinear Fourier transform (NFT) algorithm thus obtained has a complexity of <inline-formula> <tex-math notation="LaTeX">\mathop {O}(KN+C_{p}N\log ^{2}N) </tex-math></inline-formula> such that the error vanishes as <inline-formula> <tex-math notation="LaTeX">\mathop {O}(N^{-p}) </tex-math></inline-formula> where <inline-formula> <tex-math notation="LaTeX">p\in \{1,2,3,4\} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">K </tex-math></inline-formula> is the number of eigenvalues. Such an algorithm can be potentially useful for the recently proposed NFT-based modulation methodology for optical fiber communication. The exposition considers the particular case of the backward differentiation formula (<inline-formula> <tex-math notation="LaTeX">C_{p}=p^{3} </tex-math></inline-formula>) and the implicit Adams method (<inline-formula> <tex-math notation="LaTeX">C_{p}=(p-1)^{3},\,p>1 </tex-math></inline-formula>) of which the latter proves to be the most accurate family of methods for fast NFT.]]></abstract><pub>IEEE</pub><doi>10.1109/LPT.2018.2812808</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-4800-0590</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-1135
ispartof IEEE photonics technology letters, 2018-04, Vol.30 (8), p.700-703
issn 1041-1135
1941-0174
language eng
recordid cdi_ieee_primary_8307084
source IEEE Electronic Library (IEL)
subjects Complexity theory
Convergence
Eigenvalues and eigenfunctions
Fourier transforms
Manganese
Noise measurement
Nonlinear Fourier transform
Scattering
Zakharov–Shabat scattering problem
title Higher Order Convergent Fast Nonlinear Fourier Transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A22%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20Order%20Convergent%20Fast%20Nonlinear%20Fourier%20Transform&rft.jtitle=IEEE%20photonics%20technology%20letters&rft.au=Vaibhav,%20Vishal&rft.date=2018-04-15&rft.volume=30&rft.issue=8&rft.spage=700&rft.epage=703&rft.pages=700-703&rft.issn=1041-1135&rft.eissn=1941-0174&rft.coden=IPTLEL&rft_id=info:doi/10.1109/LPT.2018.2812808&rft_dat=%3Ccrossref_RIE%3E10_1109_LPT_2018_2812808%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8307084&rfr_iscdi=true