Higher Order Convergent Fast Nonlinear Fourier Transform

It is demonstrated in this letter that linear multistep methods for integrating ordinary differential equations can be used to develop a family of fast forward scattering algorithms with higher orders of convergence. Excluding the cost of computing the discrete eigenvalues, the nonlinear Fourier tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics technology letters 2018-04, Vol.30 (8), p.700-703
1. Verfasser: Vaibhav, Vishal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is demonstrated in this letter that linear multistep methods for integrating ordinary differential equations can be used to develop a family of fast forward scattering algorithms with higher orders of convergence. Excluding the cost of computing the discrete eigenvalues, the nonlinear Fourier transform (NFT) algorithm thus obtained has a complexity of \mathop {O}(KN+C_{p}N\log ^{2}N) such that the error vanishes as \mathop {O}(N^{-p}) where p\in \{1,2,3,4\} and K is the number of eigenvalues. Such an algorithm can be potentially useful for the recently proposed NFT-based modulation methodology for optical fiber communication. The exposition considers the particular case of the backward differentiation formula ( C_{p}=p^{3} ) and the implicit Adams method ( C_{p}=(p-1)^{3},\,p>1 ) of which the latter proves to be the most accurate family of methods for fast NFT.
ISSN:1041-1135
1941-0174
DOI:10.1109/LPT.2018.2812808