Temporal Encryption at 1 Tb/s
Modern networks implement multilayer encryption architecture to increase network security, stability, and robustness. Encryption on the lower layers is essential for the safety of the entire network traffic. However, at the lower layers, the data rate is at its highest, and any latency affects the n...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2018-06, Vol.36 (12), p.2344-2350 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Modern networks implement multilayer encryption architecture to increase network security, stability, and robustness. Encryption on the lower layers is essential for the safety of the entire network traffic. However, at the lower layers, the data rate is at its highest, and any latency affects the network bandwidth and reduces performance. The best solution to prevent latency is to resort to optical devices that operate at the optical transfer rate, which can revolutionize the field. We developed a new paradigm for optical encryption based on the strengths of optics over electronics and according to temporal optics principles and demonstrated a highly efficient all-optical encryption scheme for modern networks. Specifically, we utilize dispersion together with nonlinear interaction for mixing neighboring bits with a private key. The security of the system is not based on encryption algorithms but on the physical properties of photodetectors that are not able to read long ultrafast signals. Our system encrypts the entire network traffic with low latency, encrypts the signal itself, exploits only one nonlinear interaction, is energetically efficient with low ecologic footprint, and can be added to current networks without replacing the hardware such as the lasers, the transmitters, the routers, the amplifiers, or the receivers. Our method can replace current slow encryption methods or can be added to increase the security of existing systems. |
---|---|
ISSN: | 0733-8724 1558-2213 |
DOI: | 10.1109/JLT.2018.2809742 |