Time-of-Flight Range Measurement in Low-Sensing Environment: Noise Analysis and Complex-Domain Non-Local Denoising

In this paper, we deal with the problem of denoising 3D scene range measurements acquired by time-of-flight (ToF) range sensors and composed in the form of 2D image-like depth maps. We address the specific case of ToF low-sensing environment (LSE). Such environment is set by low-light sensing condit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2018-06, Vol.27 (6), p.2911-2926
Hauptverfasser: Georgiev, Mihail, Bregovic, Robert, Gotchev, Atanas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we deal with the problem of denoising 3D scene range measurements acquired by time-of-flight (ToF) range sensors and composed in the form of 2D image-like depth maps. We address the specific case of ToF low-sensing environment (LSE). Such environment is set by low-light sensing conditions, low-power hardware requirements, and low-reflectivity scenes. We demonstrate that data captured by a device in such mode can be effectively post-processed in order to reach the same measurement accuracy as if the device was working in normal operating mode. In order to achieve this, we first present an elaborated analysis of noise properties of ToF data sensed in LSE and verify the derived noise models by empirical measurements. Then, we develop a related novel non-local denoising approach working in complex domain and demonstrate its superiority against the state of the art for data acquired by an off-the-shelf ToF device.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2018.2807126