Anti-Jamming Underwater Transmission With Mobility and Learning

In this letter, we present an anti-jamming underwater transmission framework that applies reinforcement learning to control the transmit power and uses the transducer mobility to address jamming in underwater acoustic networks. The deep Q-networks-based transmission scheme can achieve the optimal po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2018-03, Vol.22 (3), p.542-545
Hauptverfasser: Xiao, Liang, Donghua, Jiang, Wan, Xiaoyue, Su, Wei, Tang, Yuliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 545
container_issue 3
container_start_page 542
container_title IEEE communications letters
container_volume 22
creator Xiao, Liang
Donghua
Jiang
Wan, Xiaoyue
Su, Wei
Tang, Yuliang
description In this letter, we present an anti-jamming underwater transmission framework that applies reinforcement learning to control the transmit power and uses the transducer mobility to address jamming in underwater acoustic networks. The deep Q-networks-based transmission scheme can achieve the optimal power and node mobility control without knowing the jamming model and the underwater channel model in the dynamic game. Experiments performed with transducers in a non-anechoic pool show that our proposed scheme can reduce the bit error rate of the underwater transmission against reactive jamming compared with the Q-learning based scheme.
doi_str_mv 10.1109/LCOMM.2018.2792015
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_8254362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8254362</ieee_id><sourcerecordid>10_1109_LCOMM_2018_2792015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-cd250d3786988c95504089ccb89123db320b574bba56e1316fd18a5a7e7f3d083</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7DJDzj4Ecf2ClURTyXqphVLy7EdMGocZEdC_XtcWrGZO5tzNXMAuMWoxBjJ-7ZZd11JEBYl4TInOwMLzJiAJI_zvCMhIedSXIKrlL4QQoIwvAAPqzB7-KbH0YePYhusiz96drHYRB3S6FPyUyje_fxZdFPvd37eFzrYonU6hoxcg4tB75K7OeUSbJ8eN80LbNfPr82qhYbUfIbGEoYs5aKWQhjJGKryQcb0QmJCbU8J6hmv-l6z2mGK68FioZnmjg_UIkGXgBx7TZxSim5Q39GPOu4VRuqgQP0pUAcF6qQgQ3dHyDvn_oH8eEVrQn8BfXRXlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anti-Jamming Underwater Transmission With Mobility and Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Xiao, Liang ; Donghua ; Jiang ; Wan, Xiaoyue ; Su, Wei ; Tang, Yuliang</creator><creatorcontrib>Xiao, Liang ; Donghua ; Jiang ; Wan, Xiaoyue ; Su, Wei ; Tang, Yuliang</creatorcontrib><description>In this letter, we present an anti-jamming underwater transmission framework that applies reinforcement learning to control the transmit power and uses the transducer mobility to address jamming in underwater acoustic networks. The deep Q-networks-based transmission scheme can achieve the optimal power and node mobility control without knowing the jamming model and the underwater channel model in the dynamic game. Experiments performed with transducers in a non-anechoic pool show that our proposed scheme can reduce the bit error rate of the underwater transmission against reactive jamming compared with the Q-learning based scheme.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2018.2792015</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustics ; deep Q-networks ; Interference ; Jamming ; Learning (artificial intelligence) ; Power control ; reinforcement learning ; Signal to noise ratio ; Transducers ; underwater transmission</subject><ispartof>IEEE communications letters, 2018-03, Vol.22 (3), p.542-545</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-cd250d3786988c95504089ccb89123db320b574bba56e1316fd18a5a7e7f3d083</citedby><cites>FETCH-LOGICAL-c267t-cd250d3786988c95504089ccb89123db320b574bba56e1316fd18a5a7e7f3d083</cites><orcidid>0000-0003-4808-7443 ; 0000-0003-1430-2555 ; 0000-0003-2402-611X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8254362$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8254362$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xiao, Liang</creatorcontrib><creatorcontrib>Donghua</creatorcontrib><creatorcontrib>Jiang</creatorcontrib><creatorcontrib>Wan, Xiaoyue</creatorcontrib><creatorcontrib>Su, Wei</creatorcontrib><creatorcontrib>Tang, Yuliang</creatorcontrib><title>Anti-Jamming Underwater Transmission With Mobility and Learning</title><title>IEEE communications letters</title><addtitle>COML</addtitle><description>In this letter, we present an anti-jamming underwater transmission framework that applies reinforcement learning to control the transmit power and uses the transducer mobility to address jamming in underwater acoustic networks. The deep Q-networks-based transmission scheme can achieve the optimal power and node mobility control without knowing the jamming model and the underwater channel model in the dynamic game. Experiments performed with transducers in a non-anechoic pool show that our proposed scheme can reduce the bit error rate of the underwater transmission against reactive jamming compared with the Q-learning based scheme.</description><subject>Acoustics</subject><subject>deep Q-networks</subject><subject>Interference</subject><subject>Jamming</subject><subject>Learning (artificial intelligence)</subject><subject>Power control</subject><subject>reinforcement learning</subject><subject>Signal to noise ratio</subject><subject>Transducers</subject><subject>underwater transmission</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7DJDzj4Ecf2ClURTyXqphVLy7EdMGocZEdC_XtcWrGZO5tzNXMAuMWoxBjJ-7ZZd11JEBYl4TInOwMLzJiAJI_zvCMhIedSXIKrlL4QQoIwvAAPqzB7-KbH0YePYhusiz96drHYRB3S6FPyUyje_fxZdFPvd37eFzrYonU6hoxcg4tB75K7OeUSbJ8eN80LbNfPr82qhYbUfIbGEoYs5aKWQhjJGKryQcb0QmJCbU8J6hmv-l6z2mGK68FioZnmjg_UIkGXgBx7TZxSim5Q39GPOu4VRuqgQP0pUAcF6qQgQ3dHyDvn_oH8eEVrQn8BfXRXlw</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Xiao, Liang</creator><creator>Donghua</creator><creator>Jiang</creator><creator>Wan, Xiaoyue</creator><creator>Su, Wei</creator><creator>Tang, Yuliang</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4808-7443</orcidid><orcidid>https://orcid.org/0000-0003-1430-2555</orcidid><orcidid>https://orcid.org/0000-0003-2402-611X</orcidid></search><sort><creationdate>201803</creationdate><title>Anti-Jamming Underwater Transmission With Mobility and Learning</title><author>Xiao, Liang ; Donghua ; Jiang ; Wan, Xiaoyue ; Su, Wei ; Tang, Yuliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-cd250d3786988c95504089ccb89123db320b574bba56e1316fd18a5a7e7f3d083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustics</topic><topic>deep Q-networks</topic><topic>Interference</topic><topic>Jamming</topic><topic>Learning (artificial intelligence)</topic><topic>Power control</topic><topic>reinforcement learning</topic><topic>Signal to noise ratio</topic><topic>Transducers</topic><topic>underwater transmission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Liang</creatorcontrib><creatorcontrib>Donghua</creatorcontrib><creatorcontrib>Jiang</creatorcontrib><creatorcontrib>Wan, Xiaoyue</creatorcontrib><creatorcontrib>Su, Wei</creatorcontrib><creatorcontrib>Tang, Yuliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xiao, Liang</au><au>Donghua</au><au>Jiang</au><au>Wan, Xiaoyue</au><au>Su, Wei</au><au>Tang, Yuliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-Jamming Underwater Transmission With Mobility and Learning</atitle><jtitle>IEEE communications letters</jtitle><stitle>COML</stitle><date>2018-03</date><risdate>2018</risdate><volume>22</volume><issue>3</issue><spage>542</spage><epage>545</epage><pages>542-545</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>In this letter, we present an anti-jamming underwater transmission framework that applies reinforcement learning to control the transmit power and uses the transducer mobility to address jamming in underwater acoustic networks. The deep Q-networks-based transmission scheme can achieve the optimal power and node mobility control without knowing the jamming model and the underwater channel model in the dynamic game. Experiments performed with transducers in a non-anechoic pool show that our proposed scheme can reduce the bit error rate of the underwater transmission against reactive jamming compared with the Q-learning based scheme.</abstract><pub>IEEE</pub><doi>10.1109/LCOMM.2018.2792015</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-4808-7443</orcidid><orcidid>https://orcid.org/0000-0003-1430-2555</orcidid><orcidid>https://orcid.org/0000-0003-2402-611X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2018-03, Vol.22 (3), p.542-545
issn 1089-7798
1558-2558
language eng
recordid cdi_ieee_primary_8254362
source IEEE Electronic Library (IEL)
subjects Acoustics
deep Q-networks
Interference
Jamming
Learning (artificial intelligence)
Power control
reinforcement learning
Signal to noise ratio
Transducers
underwater transmission
title Anti-Jamming Underwater Transmission With Mobility and Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T03%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-Jamming%20Underwater%20Transmission%20With%20Mobility%20and%20Learning&rft.jtitle=IEEE%20communications%20letters&rft.au=Xiao,%20Liang&rft.date=2018-03&rft.volume=22&rft.issue=3&rft.spage=542&rft.epage=545&rft.pages=542-545&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2018.2792015&rft_dat=%3Ccrossref_RIE%3E10_1109_LCOMM_2018_2792015%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8254362&rfr_iscdi=true